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Abstract 

The development of thermal stresses inside refractory ceramics experiencing severe 

thermal shock is studied. The present analysis departs from the linear theory of 

thermal stresses as it accounts for temperature dependent thermal and mechanical 

material properties. Radiation surface heat exchange between the refractory 

component and its surroundings is included. A Finite Element Procedure is presented 

and a MATLAB code is developed. The nonlinear heat equation is solved for the 

temperature field and this solution is subsequently used in order to determine the 

stress field evolution. The finite element code is validated and used for the thermal 

shock estimation of a refractory brick. Material properties corresponding to Al2O3 are 

selected. A thermal cycle consisting of a heating stage followed by cooling down is 

simulated. The results are compared with those predicted by the linear thermal 

stresses theory and significant deviations are observed for the examined values of the 

Biot number.    

Keywords: Thermal Stresses, Rerfactory Ceramics, Thermal Shock, Finite Elements 

 

1. Introduction 

The development of stresses inside brittle solids undergoing rapid and severe 

temperature variations has been a subject of both theoretical and applied studies for 

more than fifty years [1-9]. The practical significance of understanding and 

quantifying the phenomenon stems from the numerous applications that involve 

structural components operating in environments featuring intensely varying 

temperature distributions. Such applications involve coating design for furnaces, 

design of electronic components, thermal barrier coatings, strength analysis for 

containers and other apparatus employed in the liquid steel industry, etc. [10-12]. 
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Quantitative analysis of stress fields, induced by temperature gradients, is performed 

in most cases within the framework of thermal stresses theory [13-16]. The term 

„thermal shock‟ is typically employed for the state of a solid body undergoing sudden 

temperature changes. Thermal shock resistance for brittle solids is usually estimated 

by the maximum jump in surface temperature these materials can experience without 

cracking [3]. The analysis conducted by Lu and Fleck [3] has systematically classified 

the thermal shock resistance of both intact and pre-cracked brittle material specimens. 

The parameters considered in this study include elastic (Young‟s modulus and 

Poisson ratio) and thermal moduli (conductivity, specific heat capacity, thermal 

expansion coefficient) for an infinite orthotropic plate of specified thickness H . A 

sudden temperature change of a surrounding medium is imposed and convective heat 

transfer (with convection coefficient h ) between the medium and the solid is 

assumed. The significance of these results is enhanced by the fact that closed form 

expressions are derived for both the temperature and the stress fields. Although the 

derived closed form solutions are valid for any value of the nondimensional Biot 

number, characterising the severity of surface heat exchange, their analysis rely on the 

linear theory of thermal stresses and is therefore only valid for relatively small 

temperature variations [15]. 

   The problem of thermal shock for a brittle material is here revisited and numerical 

solutions valid for both large and small temperature variations are pursued. The 

additional phenomena introduced, with respect to the linear theory, include radiation 

heat exchange and temperature dependent thermal and elastic properties. Neglecting 

inelastic effects, the weakly coupled system of thermoelasticity (theory of thermal 

stresses) is adopted. The nonlinear heat diffusion model is solved separately and the 

derived temperature distributions are used to formulate forcing terms for the 

mechanical response. The Helmholtz free energy functional is expanded in a Taylor 

series around each point within a set of equilibrium states in the temperature – strain 

space. A local quadratic form, obtained from a Taylor expansion, for the free energy 

is retained at each state valid for small variations around the current configuration. 

Finally, a linear system (governing the incremental problem) is derived under the 

assumption that the elastic moduli are only temperature dependent. 

The solution of the resulting initial/boundary value problems is based on a special 

finite element procedure developed for the specific problem. The proposed finite 

element features Lagrange bilinear interpolation for the temperature field and 

quadratic for the displacements.  

The paper is organised as follows: In section 2 some basic characteristics of refractory 

ceramics are briefly discussed and the evolution with temperature of the thermal 

properties of alumina (Al2O3), the material to be adopted for the following analysis, 

is summarised from a literature review. The section closes with a qualitative 

presentation of the heat transfer modes relevant to the thermal loading of refractories. 

Section 3 is devoted to the presentation of the thermal stresses model to be adopted, 

while a numerical solution scheme with the finite element method is described in 
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section 4. The proposed numerical procedure has been realised in MATLAB. In the 

subsequent sections, validation of the Finite element code is preformed and the case 

of a refractory component subjected to severe thermal shock is studied. Comparisons 

between the results of the present model and the linear theory of thermal stresses are 

performed. The paper concludes with a brief discussion on the effect of lateral 

boundaries and the development of shear near corners. 

 

2.  Refractory Ceramics: Material properties and Thermal loading 

Refractory ceramics constitute a class of high temperature resistant materials. Their 

characteristic thermal and chemical properties, in particular their very high melting 

and transformation temperatures, low thermal conductivity to specific heat capacity 

ratio and their resistance to highly corrosive environments, make them ideal for many 

advanced engineering applications. These applications are mainly relevant to the 

molten steel and aircraft/automotive industry and include among others: (i) linings for 

high temperature furnaces, (ii) linings for molten steel flow channels, (iii) thermal 

barrier coatings for pistons, exhaust pipes, heat shields for re-entry vehicles etc. [10-

12]. Refractory ceramics have been employed (in metalworking sites) by mankind for 

several millenniums, as evidence from prehistoric furnaces have shown [17]. A 

replica of an ancient fireplace exhibited at Busan Museum (Busan, South Korea) is 

shown in figure 1. 

 

 

Figure 1. A replica of an ancient fireplace exhibited at Busan Museum (Busan, South 

Korea). 

 

Since refractories experience severe temperature variations during their service life 

the dependence of their thermal properties on temperature is of major importance. The 

literature on this subject is vast and numerous experimental data for refractories in 
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terms of material specific heat capacity under constant pressure pC  and thermal 

conductivity k [18-21] exist. In figure 2, these properties are plotted for 

polycrystalline alumina (Al2O3) as functions of 1T   where T  denotes the absolute 

temperature. The values depicted are adopted from the tables of reference [22]. The 

straight lines featured in the same diagram are fitting curves of the form 

1 -1 -1

1( ) Wm Kok T k k T    ,                                          (1) 

1 -1 -1

1( ) Jkg KP oC T C C T   .                                         (2) 

This particular form has been selected for this study because it has been found to fit 

the available data for both k  and PC  with very good accuracy (maximum errors less 

than 7%). Inverse power laws are typical for the description of specific heat capacity 

and thermal conductivity variations with temperature [18-21]. More accurate fitting 

curves for refractory materials exist in the literature [20] however equations (1), (2) 

will be used in the subsequent analysis due to their simple form.     

 

Figure 1. Thermal conductivity and specific heat capacity for Al2O3 (polycrystalline) 

as functions of temperature. Values from ref. [22] and corresponding regression 

curves eqns. (1), (2). 

 

In order to model heat transfer in refractory ceramics during the heating or cooling 

down stages two surface heat transfer parameters must be determined: the convection 

coefficient h  and the emissivity [0,1]  , associated with radiative heat loses. 

Utilising Newton cooling law and Stefan-Boltzmann law, the heat flux through the 

boundary of a solid, associated with convection and radiation/irradiation heat 

exchange is 
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   4 4

sur c r sq q q h T T T T      ,                              (3) 

where 8 -2 -45.67 10 Wm K    is the Stefan-Boltzmann constant, T  is the 

temperature of a surrounding fluid medium and sT  is the temperature of surrounding 

surfaces. 

Figure 3 shows the ratio of radiation to the total heat exchange from a surface as a 

function of the surface temperature when 300 KsT T   and 0.85  . The black 

curves in figure 3 correspond to different values of the convection coefficient h . The 

values of h  appearing in this figure are typical for convection with gases [22]. The 

chart can be approximately separated into two distinct areas, one characteristic for 

free convection (upper left) and one characteristic for forced convection. This specific 

choice of parameters is approximately indicative for the cooling of a (e.g. refractory) 

preheated component left in room temperature. It can be seen that radiation loses are 

most significant for lower values of the convection coefficient and increase with 

increasing surface temperature, as indicated by equation (3). 

Figure 4 is similar to figure 3 but now the values of the convection coefficient 

correspond to convection with fluids [22]. The upper part of the diagram is typical for 

free convection, while the lower is typical for forced. The emissivity is again set to 

0.85   but in this case 2000 KsT T  , so that the diagram is indicative of a low 

temperature solid interacting with a high temperature fluid. This situation is typical in 

molten steel industry applications, where refractory containers are exposed to molten 

metals.         

 

Figure 2. Ratio of radiation to total surface loses r surq q  as a function of temperature 

T  for different values of the convection coefficient h   (convection coefficient values 

typical for free or forced convection with gases). 
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Figure 3. Ratio of radiation to total surface loses r surq q  as a function of temperature 

T  for different values of the convection coefficient (convection coefficient values 

typical for free or forced convection with liquids). 

 

3. The Thermoelastic Model 

A rectangular plate that extends to infinity in the y  direction and has uniform 

thickness 2H is considered. The width of the plate is 2L  and is assumed large 

compared to its thickness (Figure 5). For the purposes of the present analysis the 

value 10L H will be adopted. The described configuration is depicted in figure 5. 

The plate experiences transient convective and radiative heat exchange uniformly 

through its boundary surfaces. Due to the large length of this configuration, both the 

heat diffusion and mechanical deformation phenomena may be analysed in a 2D 

setting, assuming plane strain conditions for the latter. In addition, the symmetry of 

the cross-section and the thermal loading conditions with respect to both x  and z  

axis allows reducing the analysis to only one quadrant of the plate.  

The symbol   is introduced to denote one quadrant of the rectangular domain 

defined by a cross-section as shown in figure 6. Let   denote the boundary of  . 

The plate is initially at a uniform temperature oT  and the temperature of a surrounding 

medium (e.g. air) is denoted by T . A material of density  , specific heat capacity C  

and thermal conductivity k  occupies domain  . In the following it is assume that 

,C k  are functions of temperature ( , , )T x z t   and correspond to the values of Al2O3 

presented in figure 2.         

Journal of the European Ceramic Society (2016), 36 (9), 2329-2340 
         doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.022



Upon defining the thermal diffusivity at a reference temperature  
1

ref ref refk C 


  

and introducing the nondimensional spatial and temporal parameters 

/x H  , /z H   and 2/ref t H  ,                                   (4) 

heat transfer inside   for the nondimensional temperature / oT T   is governed by 

the equation 

    0 0
,

/ / 0a b

ref ref i
i

C C A k k B



      


,                           (5) 

where 1 /a

o refA T C C , 1 /b

o refB T k k  and 1a b   .   

Along the subset of the boundary S  (see figure 6), where heat exchange with the 

surrounding is assumed, the surface energy balance leads to the boundary condition 

     
3

4 4

0 / b o
ref sSS S

ref

HT
k k B Bi

n k





        


 , on S              (6) 

where / refBi hH k  is the nondimensional Biot number and n  is the outward normal 

along S .  

The remaining portion of the boundary is adiabatic due to the symmetry of the initial 

domain and loading (figure 5), so that the following condition applies 

0
n





, on \ S .                                                 (7) 

 

 

Figure 4. Ceramic Refractory brick configuration and a characteristic cross-section. 

Plane strain conditions apply.  
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Note that the linear heat transfer problem for small variations around the reference 

temperature may be retrieved from the above equations by setting null values for the 

nonlinearity parameters, 0A B    .  

A consistent model of the mechanical response under severe temperature variations 

must include the temperature dependence of the elastic moduli. For the derivation of 

such a model we consider an initial stress – strain free configuration at the reference 

temperature oT . The response of the material is assumed to follow a certain path, 

comprised of local equilibrium states in the temperature-strain space as depicted in 

figure 7. The inertia term in the equations of mechanical equilibrium and the heat 

source term related to the strain rate, will not be taken into account due to their small 

magnitude for the specific examples considered [15]. For any successive equilibrium 

states ,n

ij nT  and 1

1,n

ij nT 

  it is assumed that 

1

( 1) / 1
n n

n n n

n

T T
T T

T



 


  .                                      (8) 

It is assumed that the free energy 1

1( , )n

ij nT  

  at state 1

1,n

ij nT 

  may be expanded as a 

Taylor series of the form [15] 

1

1

2 2 2

2

2

( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )1 1
. . . ,

2 2

n n

ij n ij nn n n

ij n ij ij n ij n ij

ij

n n n

ij n ij n ij n

ij kl ij

ij kl ij

T T
T T T T T

T

T T T
T T h o t

T T

   
       



     
  

  





 
         

 

  
        

    

  (9) 

where 1

( 1)

n n

ij ij ij n n  

    .  

The stress at state 1n   is [15, 16] 

   

   

1

11

2 2

1

1

1

1

( , )

( , ) ( , ) ( , )

n

ij nn

ij

ij

n n n

ij n ij n ij nn n

kl kl n n

ij ij kl ij

n n n n n

ij ijkl kl kl ij o n n

T

T T T
T T

T

C T






     
 

   

   














 



  
    

    

    

,          (10) 

where 

2 ( , )n

ij nn

ijkl

ij kl

T
C

 

 




 
 and 

2 ( , )n

ij nn

ij

ij

T

T

 







 
,                              (11) 

are the elastic moduli fourth order tensor and the thermoelastic coupling second order 

tensor at state ,n

ij nT ,  respectively. For an isotropic material it is 1(1 2 )ij ijE v    , 
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where   is the linear thermal expansion coefficient, ,E v  is young‟s modulus and 

Poisson‟s ratio respectively and ij  is Kronecker‟s symbol. At each equilibrium state 

it is 

, 0ij j  .                                                    (12) 

The stress equilibrium at state 1n   satisfies  

 1

, , ( 1) ( 1) ,
0n n n n

ij j ij j ijkl kl n n o ij n n j
C T   

         .                  (13) 

Equilibrium condition requires , 0n

ij j   for all n  and therefore at state 1n    the 

stress field satisfies   

 ( 1) ( 1) ,
0n n

ijkl kl n n o ij n n j
C T        .                            (14)   

Due to the linearity of the small strain operator, it is 

 , ,

1

2
ij i j j iU U    ,                                            (15) 

where /i iU u H , ,i    denotes the nondimensional displacement field. 

The boundary conditions for the problem under consideration are summarised in 

figure 6.   

 

 

Figure 6. Thermal and mechanical boundary conditions for one quadrant of the cross-

section. 

Journal of the European Ceramic Society (2016), 36 (9), 2329-2340 
         doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.022



 

Figure 7. Path of successive thermomechanical equilibrium states in the ,ij T state 

variable space. 

 

4. Finite Element Solution 

The Finite Element method is a numerical procedure commonly employed for 

approximate solutions of demanding thermomechanical problems than cannot be 

treated by analytical techniques [23-28]. In this study, a finite element procedure 

employing Lagrange elements of bilinear interpolation for the discretization of the 

temperature filed and biquadratic interpolation for the displacement fields is 

employed (figure 8). After semi-discretization with finite elements, the nodal 

unknown values of the nondimensional temperature are computed as the solution of 

an Ordinary Differential Equation system of the form  

   
d

d
 

Θ
C Θ K Θ Θ f .                                      (16) 

For the solution of this nonlinear system, the Implicit Euler method has been adopted. 

Assuming a uniform partition, defined by the time increment /J N   as 

1 10 2 ..... NN J               ,                        (17) 

where 0 J   (for some 0J  ) and N  is the number of time steps, the solution at 

time instant 1n   is 

     1 1 1 1 1n n n n n n           C Θ K Θ Θ C Θ Θ f .                  (18) 

This last expression defines a nonlinear algebraic system to be solved iteratively. For 

its solution, the Picard iteration procedure has been utilized. Having evaluated the 

temperature at nodal points, the element force vector and stiffness, corresponding to 

the elastic deformation problem defined by equation (14), are evaluated at Gauss 

points for the biquadratic approximation through interpolation. At each time step a 

linear system is solved for the evolution of the displacement field. 
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Figure 8. Proposed finite element interpolation for the calculation of temperature and 

thermal stresses. 

 

5. Application: Severe thermal shock of a refractory component 

The above presented model and finite element code will be used for the simulation of 

the temperature distribution and thermal stress fields inside a refractory ceramic 

component with geometry as specified in figure 6. The analysis extends the results 

derived in reference [3] for an un-cracked specimen to the case of large temperature 

variations and includes the effects of heat transfer by radiation. It will be shown that 

the contribution of radiation heat exchange and the dependence of thermal and elastic 

moduli on temperature influence significantly the thermo-mechanical response of a 

refractory. In particular, if large temperature variations are assumed and the Biot 

number is not too high, significant differences between the present results and the 

linear model are observed. 

The dependence of specific heat capacity and thermal conductivity on temperature are 

chosen to be as presented in section 2. The most important feature concerning these 

quantities is that the thermal conductivity reduces with increasing temperature, while 

the specific heat capacity increases. This is indicative of the materials tendency to 

store heat rather than transferring it as its temperature attains higher values. For the 

determination of thermal stresses, the elastic moduli and thermal expansion 

coefficient   must be estimated. For Alumina, the elastic modulus typically 

decreases as temperature becomes higher [22]. The same trend has been recorded for 

Poisson‟s ratio. Finally, the thermal expansion coefficient is an increasing function of 

Temperature. Following [22] we employ the linear equations (19) and (20) for 

Young‟s modulus and Poisson‟s ratio, where the positive constants that appear in 

these relations are 
4 -1

1 1.2 10 K    and 
5 -1

2 6.9 10 K    [29, 30]. Although the 

variation of the thermal expansion coefficient is not typically linear, formula (21) is 

adopted in the following, as it provides good approximation of measured data [30] for 

the temperature range of interest. The positive constant appearing in (21) is selected 

as 
4 -1

3 8 10 K   .  

1( ) (1 )oE T E T  ,                                                (19) 
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 2( ) 1ov T v T   and                                           (20)  

3(1 )T o T    .                                                   (21) 

Setting 1 2 3 0      the elastic solution with temperature independent properties is 

retrieved. 

The selected thermal loading time profile is assumed to consist of two distinct stages. 

During the first stage, the surrounding temperature is assumed to change from the 

reference temperature oT  that characterise the configuration for 0   to a value T . 

The change from oT  to T  occurs instantaneously at 0  . The duration of the first 

stage, termed the heating stage, is from 0   to 1  . At 1   the surrounding 

temperature drops instantaneously to oT  again and the time interval 1 2   is the 

second stage, termed the cooling stage. In all cases it is assumed that sT T . Two 

different thermal loading cycles of this particular form are considered. The first cycle 

termed Thermal Cycle A with 600 KT   and the second, termed Thermal Cycle B 

with 900 KT  . Thermal Cycle A is selected because the nondimensional 

temperature jump 

1o

o

T T

T





   ,                                                (22) 

attains the value that corresponds to the results presented in [3] and which will be 

used for validation purposes of the Finite Element code. Thermal Cycle B is closer to 

the typical service condition of refractory ceramics and is employed in order to 

demonstrate further the nonlinear phenomena associated with large temperature 

variations. Both thermal loading cycles are plotted in figure 9. 

The value 0.1 mH   is selected for the structure thickness. The emissivity is set to 

0.8  , a typical value for alumina, and is assumed not to vary with respect to 

temperature. This last assumption, though not entirely realistic, is adopted so as to 

limit the parameters entering the analysis. In practice, temperature induced variations 

of the emissivity (or the convection coefficient) are expected to influence the surface 

heat exchange for the periods during which large differences between the ambient 

temperature and the surface temperature exist. Three different values of the Biot 

number are tested, namely 1, 10,100Bi  . The reference temperature is 300 KoT   

and the reference values for thermal conductivity and specific heat capacity are 
-1 -136 Wm Krefk    and -1 -1765 Jkg KrefC  .   
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Figure 9. Time profile of two thermal loading cycles involving a heating and a 

cooling stage. Cycles A reaches a maximum temperature of two times the initial one 

300oT K , while Cycle B reaches a maximum temperature of three times the initial 

one. 

 

In order to test the two dimensional code and in particular the solver for the 

temperature field as the latter is governed by a nonlinear equation for which no 

analytic solution exists, we also formulate an easier 1D example. We consider the 

case of an infinite wall that experiences both convection and radiation heat exchange 

through its upper and lower surface. The 1D problem setting is depicted in figure 10. 

This problem is a transient problem in one spatial dimension and a 1D quadratic finite 

element scheme has been devised for each solution. The governing equation is 

equation  (5), where ,  has been set to zero. The results for the temperature of this 

1D model must coincide with those of the 2D plane FEM code at 0   . 

   

 

Figure 10. Heat conduction inside an infinite refractory strip and surface losses 

(convection - radiation). Null heat conduction at 0   due to symmetry conditions. 
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 Figure 11 is a comparison between the 1D and 2D FEM models for the temperature 

along axis 0   at two time instances. The selected nondimensional time values 

correspond to half the duration of the heating stage and half the duration of the 

cooling stage of thermal cycle B. The value 10Bi   is selected. As an error measure 

for the temperature field along line 0   the quantity 

1 2
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is selected. The 1D solution is considered to be the exact. A large number of 1D 

elements has been used (100 quadratic elements) and at first convergence for the 1D 

model has been established. In the sequence, the solution from the 2D code has been 

obtained with a coarse and a finer mesh. The coarse mesh consists of 100 2D elements 

(figure 7) and the finer mesh consists of 400 2D elements. In all cases 200 time steps 

where used. It can be seen form figure 10, that even for coarse meshes, the errors 

obtained are less than 0.8%. 

 

Figure 11. Convergence of the 2D finite element code for the temperature field. 

Results correspond to thermal cycle B and 10Bi  . Temperature curves (upper part) 

and % relative error (lower part). 

 

In the following analysis a mesh with 4000 elements was used and refinements where 

performed in order to test the convergence of the results. A total of 400 time steps 

where used in order to monitor the thermo-mechanical response during the thermal 

cycles.  
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The evolution of the temperature field inside the refractory brick is depicted in figure 

12. The plotted results correspond to one quadrant of the cross-section for Thermal 

Cycle B and 1Bi  . Qualitatively similar results are obtained for the other values of 

the Biot number ( 10,100Bi  ). In these cases of higher Biot numbers, the 

temperature increases to its highest value more rapidly and accordingly reduces faster 

during the cooling stage. In all cases, the points at the boundary attain the highest 

values at each time instant (first column in figure 12). In particular, the highest 

temperature during the heating stage appears at 10, 1   . Once the cooling stage 

begins, surface temperature begins to drop and the highest temperature appears in the 

interior of the solid (second column in figure 11). An important fact is that away from 

the lateral boundary at 10  , heat transfer is practically one dimensional and occurs 

through the thickness of the brick. Thus, due to the large length of the configuration 

compared to its thickness, at 0  , the one dimensional model employed in reference 

[3] is recovered.   

Figure 13 shows the evolution of the stress component   inside domain  . The 

stress is divided by the scaling parameter 

1

o o
o

o

a E
D T

v
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
.                                                   (24) 

The results in figure 13 correspond, as those in figure 12, to thermal cycle B with 

1Bi  . The one dimensional character of the stress field away from the lateral 

boundary 10   is evident. At the area close to line 0  ,   represents the only 

nonzero stress component it the    plane. During the heating stage, the developed 

stresses in this area are compressive at the upper boundary and become tensile with 

increasing value as the centreline 0   is approached. The situation reverses during 

the cooling stage as tension appears at the vicinity of the upper boundary 1   and 

compressive stresses develop at the area of the centre ( 0  ). The one dimensional 

character of the field is lost as the lateral boundary is approached ( 10  ). In addition 

shear stresses developed in this area. These parasitic shear effects will be analysed in 

the next section.      
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Figure 12. Nondimensional temperature field   inside the specimen (only one 

quarter is plotted) at different time instances for thermal cycle B and 1Bi  .  

 

Figures 14-16 present the time profile of the temperature and the stress component 

  at 0, 0    and 0, 1   . Figure 14 corresponds to 1Bi  . The first 

column of the figure presents temperature and stress for thermal cycle A, while the 

second column for thermal cycle B. Both the results for the linear model (

0A B     and 0, 1,2,3i i   ) and the nonlinear model are shown.  The FEM 

results for the linear model are plotted with a dashed line. A thick solid line is used for 

the FEM results of the nonlinear model. The analytical results derived by Lu and 

Fleck [3] for the stresses of the linear model are plotted for validation purposes. These 

results were depicted in the original paper for nondimensional time up to 0.5  , for 

a hot shock (heating) or alternatively for a cold shock (cooling). In this case the 

results are shown for the „hot shock‟ situation occurring during the heating stage. 

Excellent agreement has been found between the analytic results [3] and the linear 

FEM. The differences between the present model and the linear one are clearly shown 

in terms of both temperatures and stresses. The temperature at the upper surface of the 

configuration raises mode rapidly in the nonlinear case due to the additional surface 
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heat exchange related with radiation. For the same reason the temperature drops 

faster, especially at the early stages, during the cooling process. 

 

Figure 13. Nondimensional stress field / D   inside the specimen (only one quarter 

is plotted) at different time instances for thermal cycle B and 1Bi  .  

The situation is different at 0  . At this coordinate, the temperature values 

predicted by the nonlinear model are lower than those predicted by the linear one. 

This is the result of the reduction of thermal conductivity and increase of specific heat 

capacity with increasing temperature. As temperature increases thermal diffusivity 

drops and heat tends to store near the upper surface of the body. Hence, at the most 

distant point 0  , the temperature increase is weakened. For the same reason 

temperature appears to drop faster during the cooling stage if the linear model is used. 

Again the increased diffusivity predicted by the linear model causes heat to be 

conducted more easily away from the point 0  . These differences in the 

temperature profiles along with the decrease of Young‟s modulus/Poisson‟s ratio and 

the increase of the thermal expansion coefficient lead to considerable deviations in the 

stresses distributions between the linear and nonlinear model. The stresses at 1   

predicted by the nonlinear model during the heating stage are higher than those 
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predicted by the linear one. This is due to the more rapid and severe increase in 

temperature that occurs when radiation is included in the incoming heat flux. During 

heating, after the initial increase of the stress, a stage of stress reduction occurs for the 

linear model. In the case of when nonlinearities in the elastic and themoelastic moduli 

are present, the stress constantly increases until 1  .     

 

 

Figure 14. Temperature (upper part) and stress (lower part) time profiles at 0   for 

thermal cycles A, B and 1Bi  .  

In figure 15, the temperature and stress profiles corresponding to 10Bi   are plotted. 

This larger value of the Biot number is indicative of more intense convective heat 

transfer in the upper surface of the plate and the differences in temperature values 

predicted by the two models become smaller. However, the radiation heat exchange 

term, which involves the difference of the fourth powers of the surface temperature 

and ambient temperature contributes significantly during the first stages of the heating 

cycle (of cooling cycle respectively). The stresses, as calculated by the nonlinear 

model, are significantly higher (in absolute value) for 1   during the first part of the 

heating stage when compared to the results of the linear one. After reaching their 

maximum absolute value approximately at 0.1  , the stresses for 10Bi   decrease 

in magnitude for the rest of the heating stage. This decrease is not as rapid as the 

respective situation predicted by the linear model. The change induced in elastic 

moduli values due to temperature variations is this time balanced by the flattening of 
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the temperature profile during this specific stage. It can be seen from the stress time 

profiles that as the cooling stage progresses the stress becomes tensile in the upper 

surface and compressive in the centre of the plate. 

 

 

Figure 15. Temperature (upper part) and stress (lower part) time profiles at 0   for 

thermal cycles A, B and 10Bi  . 

 

Figure 16 corresponds to 100Bi  . In this case, the temperature at the upper surface 

of the plate reaches the value T  very quickly and the analysis presented in [3] for 

Bi    is approximated. The effects of radiative heat transfer and temperature 

dependent material properties are still significant as they produce differences in both 

the temperature and stress field. In particular, the temperature at 0   the centre of 

the configuration is significantly lower than that of the upper boundary in the 

nonlinear case.  
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Figure 16. Temperature (upper part) and stress (lower) time profiles at 0   for 

thermal cycles A, B and 100Bi  . 

 

6. The effect of lateral boundaries 

The presence of lateral boundaries in the adopted plane strain analysis has several 

side-effects that although do not alter the practically 1D fields at the area of 0   

lead to discrepancies near 10  . Since the boundary line 10   experiences heat 

exchange with the surroundings, the temperature and stress fields at its vicinity are no 

longer 1D. This is clearly demonstrated in figures 12 and 13. The temperature near the 

upper right corner of the specimen has always the highest value of all the points inside 

the domain during the heating stage. In addition to that, the temperature at that 

particular area drops faster once the cooling stage begins as is also depicted in figure 

12. Another significant effect is the triggering of shear stresses at this particular area. 

The development of shear stresses is due to the presence of the upper right corner. 

The temperature field inside the bulk of the material is smooth, as dictated by the 

solution properties of the heat equation in the interior of the domain. Thus, the 

isothermal lines near the corner are smooth and present no kinks that mimic the 

boundary geometry. This concept is shown in figure 17. Consequently, a point in an 

isothermal line near the corner will be at different temperature with its neighbouring 

points for constant   and constant  . This leads to the distortion of differential areas 

at the vicinity of the corner and the development of shear stresses. 
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The development of shear stresses for different time instances during the heating and 

cooling stage of thermal cycle B are plotted in figure 18. Results correspond to the 

Biot number 1Bi  . The shearing effects can be seen to decay fast as the distance 

from the boundary 10   increases. Thus, the one dimensional character of the stress 

field near 0   that is representative for the case L   is not altered.    

 

 

Figure 17. Smooth isothermal lines near the upper right corner of the domain leading 

to different temperature values along the diagonal of differential volumes and the 

development of shear stresses. 

 

Figure 19 is a comparison between the evolution of the   and   fields at two 

different positions along the length of domain  , namely 0.2   and 0.96  . The 

first location corresponds to the area near the centre of the cross-section and the shear 

stress field is expected to vanish there. The second location is situated very near the 

lateral boundary 10   where transient shear stresses appear. The plotted values 

correspond to thermal cycle B with 1Bi  . It can be seen from figure 19 that shear is 

practically non-existent at 0.2  . The calculated shear stress values are at least 

seven orders of magnitude smaller than   and just represent noise of the numerical 

solution. At 0.96   shear stresses exist but are almost one order of magnitude less 

than the normal ones. The shear stress distribution, as a function of  , reverses sign 

as the cooling stage of the thermal cycle progresses. Figure 19 is also indicative of the 

relative differences in the   distribution as the lateral boundary at 10   is 

approached. 
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Figure 18. Shear stress / D  development near the lateral boundary of the 

specimen at different time instances for thermal loading cycle B and 1Bi  . 

 

Figure 19. Variation through the thickness of stresses   and   at different 

positions along the length of the domain. Shear stresses are practically zero for small 

values of the coordinate  .  
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Conclusions 

The thermal shock of refractory components was studied through numerical 

simulations. A special finite element procedure has been proposed and tested for the 

approximation of temperature and stress fields inside refractory ceramics undergoing 

severe temperature variations. Material values corresponding to polycrystalline Al2O3 

have been used and their dependence on temperature has been accounted for. Two 

thermal cycles consisting of a heating stage (different maximum temperature for each 

cycle) followed by cooling down have been simulated. The results of the derived 

nonlinear model have been compared to those of linear thermal stresses theory and 

significant deviations have been documented. In particular the effect of radiative heat 

transfer is very strong for small values of the Biot number, controlling convection 

phenomena. The drop in thermal conductivity values and increase in the specific heat 

capacity that occurs as temperature increases, leads to substantial differences in both 

the thermal and mechanical response far from the exposed surface. Assuming uniform 

heating on the whole boundary, the effect of corners on the development of parasitic 

shear stresses is studied. These stresses are found to be much smaller in magnitude 

than the normal ones and vanish quickly as the distance from the corner increases.     
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