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Abstract 

It is well known, that thermo-elastic effects may have significant results upon the 

macroscopic response in the mechanics of contact. On the other hand, as the scales in the contact 

system reduce progressively (micro to nano–scales), the internal material lengths become important 

and their effect upon the macroscopic response cannot be ignored. The present work extends the 

classical contact solution for a hot flat punch indenting a homogeneous elastic half–plane, where heat 

conduction is permitted (Comninou et al., 1981), to the analogous case of an indented 

microstructured solid. The behavior of the indented material is modelled through the couple–stress 

elasticity theory, which introduces characteristic material lengths and is appropriately modified in 

order to incorporate the thermal effects. The problem formulation is based on singular integral 

equations, resulted from a treatment of the mixed boundary value problems via integral transforms 

and generalized functions. The results show significant departure from the predictions of classical 

thermoelasticity showing that the microstructural characteristics of the material should not be 

ignored. 
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1. Introduction 

 The contact of two bodies maintained at different temperatures yields to thermo-elastic 

deformations at the contact region that, although small, can affect the contact pressure distribution 

and, depending on the temperature difference between the two bodies, even the contact area.  

Assuming that the heat flows only through the contact area and that no heat flows across the exposed 

surfaces, theoretical investigations by Barber (1971, 1973 and 1978) on indentation problems predict 

that the regions near the contact area expand when the indentor’s temperature is raised over a 

specific limit, causing the separation of the two solids, if the compressive load is maintained 

constant. This separation is expected to cause a reduction in the extent of the contact area between 

the indentor and the indented elastic body. This behavior was also experimentally confirmed by 

Clausing (1966) who, almost ten years earlier, had shown that the thermal contact resistance between 

two contacting bodies varies with the transmitted heat flux as a result of the thermo-elastically driven 

changes in the extend of the contact area. 

 It is well-known that material microstructure influences the macroscopical behavior of 

complex materials, such as composites, cellular materials and ceramics. In fact Maranganti and 

Sharma (2007) showed that gradient effects play significant role in complex materials with course-

grain microstructure, while Chen et al. (1998) developed a continuum model for cellular materials 

and concluded that the continuum description of this class of materials obeys a gradient elasticity 

theory of the couple-stress type by naturally identifying the cell size with the material length scale. 

Size effects have been also predicted for two dimensional grid-works (Askar and Cakmak, 1968) and 

three dimensional cubic lattices (Lakes, 1986) and, associated with Cosserat elasticity, lead to an 

increase in moduli with decreasing specimen size relative to the cell size (Onck et al. 2001). Finally, 

strain gradient effects, even though difficult to be measured, have been observed in rigid 

polyurethane and polymethactylimide foams (Lakes, 1986; Anderson and Lakes, 1994). 

While classical continuum theories do not incorporate internal length-scales and therefore 

cannot take into account micromechanical effects, the use of generalized continuum theories (see e.g. 

Maugin, 2010) allows to achieve a more effective description of the mechanical response when, for 

instance, stress concentrations appear (Georgiadis, 2003; Gourgiotis and Piccolroaz, 2014) or 

instability phenomena are involved (Dal Corso and Willis, 2011; Bacigalupo and Gambarotta, 2013). 

The need for such generalized continuum models has also been verified through experimental (Lakes 
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 et al., 1985; Beveridge et al., 2013) and theoretical (Smishlayev and Fleck, 1995; Bigoni and 

Drugan, 2007; Bacca et al., 2013a; 2013b; Bacigalupo, 2013) approaches. 

 During indentation, size effects can be dominant especially when the indentation size is 

comparable to the material microstructure. This process has been modeled employing classical 

theories by directly incorporating the microstructural characteristics into the model through purely 

geometrical considerations (see e.g. Chen et al., 2004; Stupkiewicz, 2007; Fleck and Zisis, 2010; 

Zisis and Fleck, 2010) and phenomenological approaches based on gradient elasticity / plasticity 

ideas, or on discrete dislocation concepts (Muki and Sternberg, 1965; Poole et al., 1996; Begley and 

Hutchinson, 1998; Nix and Gao, 1998; Shu and Fleck, 1998; Wei and Hutchinson, 2003; Danas et 

al., 2012; Zisis et al., 2014;). Even though, purely elastic indentation of materials is hard to achieve 

in practice (Larsson et al., 1996), elasticity can be of interest in particular cases. In fact, there are 

materials, such as polymers, that exhibit significant size effects also in the elastic regime (Han and 

Nikolov, 2007, Nikolov et al., 2007). 

 In the present study, the steady-state plane-strain contact problem of the hot frictionless flat 

punch indenting a couple-stress elastic half-plane is investigated for the first time to analyze the 

influence of the internal length scale upon the macroscopic response. In addition to the dependence 

of the response upon the heat flux amount from the indentor to the substrate and the magnitude of the 

indentation load observed in the classical framework, it is shown that the type of contact (perfect 

contact throughout the width of the indentor or separation near the corners of the punch) occurring is 

strongly affected by the microstructural characteristics of the material. The opposite problem of a 

cool flat punch indenting an elastic half-plane with microstructure, characterized by the possibility of 

having imperfect contact (Barber, 1971; 1973; 1978 and Comninou and Dundurs, 1979), will be a 

subject of a future work. 

 The paper is organized as follows. In Sections 2 and 3 the fundamental equations of couple–

stress thermoelasticity are summarized and particularized to plane–strain case. In Section 4 the 

problem of the indentation of an elastic half–plane by a hot flat punch is formulated and the 

appropriate boundary conditions are described. The mixed boundary value problem is attacked via 

Fourier transforms and singular integral equations (Sections 5 and 6). Accordingly, the integral 

equations are solved by employing analytical and numerical considerations in Section 7. The results 

are discussed in detail in the final part. 
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 The attained results have genuine practical application in qualitatively identifying the 

influence of length scale effects in solids, a requirement of practical importance for the advanced 

design of materials and structures. 

 

2. Fundamentals of couple-stress thermoelasticity 

 One of the most effective generalized continuum theories is that of couple–stress elasticity, 

also known as Cosserat theory with constrained rotations (Mindlin and Tiersten, 1962; Koiter, 1964). 

In this theory, the modified strain–energy density and the resulting constitutive relations involve, 

besides the usual infinitesimal strains, certain strain gradients known as the rotation gradients. The 

generalized stress–strain relations for the isotropic case include, in addition to the conventional pair 

of elastic constants, two new elastic constants, one of which is expressible in terms of a material 

parameter  that has dimension of [length]. The presence of this length parameter, in turn, implies 

that the modified theory encompasses the possibility of size effects. This theory was extended by 

Nowacki (1966) who derived constitutive equations on the basis of thermodynamics of irreversible 

processes and provided the fundamental differential equations of couple-stress thermoelasticity. 

We begin by giving an account of the theory of couple–stress thermoelasticity as introduced 

by Nowacki (1966). In the absence of inertia effects, the balance laws for the linear and angular 

momentum lead to the following force and moment equations of equilibrium (Mindlin and Tiersten, 

1962) 

 

, 0ji j iXσ + =   ,          (1) 

, 0σ µ+ + =ijk jk ji j ie Y   ,         (2) 

 

where a Cartesian rectangular coordinate system Oxyz  is used along with indicial notation and 

summation convention. In these equations σ ij  is the force–stress tensor, ijµ  is the couple-stress 

tensor, iX  denotes components of the body-force vector referred to a body unit, and iY  denotes the 

components of the body–couple vector, a comma denotes partial differentiation and ijke  is Levi–

Civita alternating symbol. Further, ijσ  can be decomposed into its symmetric and anti-symmetric 

components as follows 
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ij ij ijσ τ α= +   ,          (3) 

 

with ij jiτ τ=  and ij jiα α= − , whereas it is advantageous to decompose ijµ  into its deviatoric ( )D
ijµ  

and spherical ( )S
ijµ  parts in the following manner 

 

1
3ij ij ij kkmm δ m= +   ,         (4) 

 

with ( )D
ij ijmm = , ( ) ( )1 3S

ij ij kkµ δ µ= , and ijδ  is the Kronecker delta. Now, with the help of the Green-

Gauss theorem and employing the moment equation of equilibrium (2), one may obtain the anti-

symmetric part of the stress tensor as 

 

( ),
1
2ij ijk pk p ke Yα µ= − +  .        (5) 

 

from which follows that the stress tensor is symmetric in the absence of body couples and for a 

vanishing divergence of couple-stresses. Finally, combining (1)-(5) yields the final equation of 

equilibrium which involves only the symmetric part stress tensor and the deviatoric part of the 

couple-stress tensor 

 

( ), , ,
1 0
2ji j jki pj pk j k ie m Y Xτ − + + =  .   (6) 

 

Concerning the kinematical description of the continuum, the following primary kinematical 

fields are defined in the framework of the geometrically linear theory 

 

( ), ,
1
2ij j i i ju uε = +   , ,

1
2i ijk k je uω =   ,      ,ij j iκ ω=  ,      (7) 
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where ijε  is the strain tensor, iω  is the rotation vector, and ijκ  is the curvature tensor (i.e. the 

gradient of rotation or the curl of the strain) expressed in dimensions of [length]-1, which by 

definition is traceless: 0iiκ =  since , 0i iω = . Accordingly, the compatibility equations for the 

kinematical fields in (7) are (Naghdi, 1965) 

 

, 0ipm mjk ij k pjm mje e eek + =  ,    , 0ikm jpm ij ke e k =  .       (8) 

 

where the elimination of ijκ  between (8) leads to the usual Saint Venant’s compatibility equations 

for the strain tensor components. 

Regarding the boundary conditions, we note that in the constrained couple-stress theory the 

normal component of the rotation vector is fully specified by the distribution of tangential 

displacements over the boundary. This implies that the traction boundary conditions, at any point on 

a smooth boundary or section, consist of the following three reduced force-tractions and two 

tangential couple-tractions (Mindlin and Tiersten, 1962; Koiter, 1964) 

 

( )
( ),

1
2

n
i ji j ijk j nn kP n e n mσ= −  ,             (9) 

( )
( )

n
i ji j nn iR m n m n= −  ,         (10) 

 

where ( )nn i j ijm n n m=  is the normal component of the deviatoric couple-stress tensor ijm , and in  are 

the components of the unit vector outward normal to the surface. 

 The principle of conservation of energy written for an arbitrary volume V  of the body, 

bounded by a smooth surface A  , has the form 

 

( ) ( )( ) ( )

     rate of work of force          rate of internal   rate of work of body forces 
      and c    energy of the volume         and body couples

n n
i i i i i i i i

V V A

UdV X u Y dV P u R dAww = + + +∫ ∫ ∫

  

(( ((((((

    heat transferred by 
ouple tractions       heat conduction

i i
A

q n dA− ∫
(((((( ((

,  (11) 
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where U  is the internal energy, iq  is the component of the heat-flux vector, and the superimposed 

dot denotes differentiation with respect to time. By using the divergence theorem and the definitions 

in (9) and (10) in conjunction with the equations of equilibrium (1) and (2), the equation of the 

energy conservation (11) localizes in the form 

 

,ij ij ij ij i iU m qτ ε κ= + −

   .         (12) 

 

Further, the equation of entropy balance is written as (Green and Adkins, 1960) 



   rate of increase   rate of production rate of entropy       of entropy    of entropy due to supplied to the     heat conductionvolume across 
the surface

i i

V VA

q nSdV dA dV
T

= − + Θ⌠
⌡∫ ∫





  (13) 

 

where S  is the entropy per unit volume, T  is the temperature, and Θ  represents the rate of 

production of entropy per unit volume of the material due to heat conduction. Using the divergence 

theorem and assuming that the volume is arbitrary, Eq. (13) can be written in the local form as  

 

, ,
2= Θ − +

i i i iq q T
S

T T
 ,         (14) 

 

so that, eliminating ,i iq  from (12) and (14), we obtain  

 

,
2

i i
ij ij ij ij

q T
U m TS T

T
τ ε κ

 
= + + − Θ + 

 


   .       (15) 

 

Accordingly, introducing the expression for the Helmholtz free energy W U TS= −  and assuming 

that W  is a function of the independent variables ε ij , κ ij  and T , we obtain the following relations 

(Nowacki, 1966) 

 

ij
ij

Wτ
ε

∂
=

∂
 ,    ij

ij

Wm
κ

∂
=

∂
  ,  WS

T
∂

= −
∂

 ,
2, 0i iq T

T
Θ + =  .    (16) 
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In accordance with the thermodynamics of irreversible processes, we postulate that: 0Θ ≥ , which 

implies that: 2
, 0i iq T T− ≥ . The latter inequality is satisfied when the Fourier law of thermal 

conductivity is assumed, which for an isotropic and homogeneous body becomes 

 

,i iq kq= − ,   (17) 

 

where k  is the conductivity coefficient, 0T Tθ = −  is the temperature change measured from 0T , the 

absolute temperature of the solid in its reference state of uniformly zero stress and strain. Thus, in 

view of equation (14) and taking into account the last relation of (16) , we derive the heat conduction 

equation as 

 

,iiTS kθ=  .          (18) 

 

Assuming a linear and isotropic material response, we expand the free energy density 

( ), ,ε κij ijW T  in the neighborhood of the natural state ( )0, ,W T0 0  as (Nowacki, 1966) 

 

21 2 2
2 2ii jj ij ij ij ij ij ji kk

mW λε ε mε ε ηkk  η kk  βε θθ ′= + + + − −  ,  (19) 

 

where ( ), , ,λ µ η η′  are material constants which refer to the isothermal case. The moduli ( ),λ µ  

have the same meaning as the Lamè constants of classical elasticity theory and are expressed in 

dimensions of [force][length]–2, whereas the moduli ( ),η η′  account for couple–stress effects and 

are expressed in dimensions of [force]. In addition, ( )3 2β λ µ α= +  with α  being the coefficient of 

thermal expansion, ( )2 2
00,0,m W T T= −∂ ∂ , and assuming positive definiteness of the internal 

energy the material parameters satisfy the following inequalities (Mindlin and Tiersten, 1962) 

 

3 2 0λ µ+ >  , 0µ >  , 0η >  , 1 1η
η

′
− < <  .      (20) 
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Now, making use of the relations (16), we obtain the generalized Duhamel-Neumann constitutive 

equations for a thermo-elastic couple-stress medium 

 

2ij kk ij ij ijτ λε δ µε βθδ= + −  ,   4 4ij ij jim ηκ η κ′= +  ,     (21) 

kkS mβε θ= +  .         (22) 

 

It is interesting to note that the term kkkθ   does not appear in (19) since the curvature tensor is 

traceless. Therefore, in contrast with the micropolar (unconstrained Cosserat) elasticity (see e.g. 

Nowacki, 1986), the couple-stresses in (21)2 do not depend upon the temperature, whereas the 

entropy in (22) does not depend upon the trace of the curvature.  

Incorporating now the constitutive relations (21) into the equation of equilibrium (6) and using 

the geometric relations in (7), one may obtain the displacement equations of equilibrium, in the 

absence of body forces and body couples, as  

 

( )2
, , , , ,( )i jj j ji i jjkk j jikk iu u u uµ λ µ µ βθ+ + − − =  ,     (23) 

 

where ( )1 2η µ≡  is a characteristic material length. Note that the multiplication of  with the 

higher-order term reveals the singular-perturbation character of the couple-stress theory and the 

emergence of associated boundary-layer effects. As 0→ , the equations of classical linear isotropic 

thermoelasticity are recovered from (23)1.  

Finally, assuming that 0 1Tθ <<  and that there are no heat sources within the body, the 

following equation of thermal conductivity is derived (Nowacki, 1966) 

1 Experiments with phonon dispersion curves indicate that for most metals, the characteristic internal length is of the 

order of the lattice parameter, about 0.25nm (Zhang and Sharma, 2005a) while other small–molecule materials have 

larger internal characteristic lengths. For example, for the semiconductor gallium arsenide (GaAs), Zhang and Sharma 

(2005b) estimated a characteristic length of about 0.82nm, while Lakes (1995) estimated a microstructural length for 

graphite H257 of the order of 2.8nm. Furthermore, foam and cellular materials exhibit a characteristic length that is 

comparable to the average cell size whereas in laminates is of the order of the laminate thickness. In particular for dense 

polyurethane foams the microstructural length may be equal to 0.33mm while for human bones about 0.5mm (see Lakes, 

1995). 
9 
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0
, 0jj kk

c T
k k
ε βθθ  ε− − =

  ,        (24) 

 

where 0c mTε =  is the specific heat at constant deformation. Equations (23) and (24) constitute the 

governing set of the field equations in the linear theory of couple-stress thermoelasticity. Note that 

(24) has the same form as in the classical theory. 

 

3. Basic equations in plane–strain 

The governing equations presented for linear and isotropic couple-stress thermoelasticity are 

particularized here to the plane strain case2. For a body that occupies a domain in the ( ),x y –plane 

under conditions of plane strain, the displacement field takes the general form: 

 

( ), 0x xu u x y≡ ≠ ,  ( ), 0y yu u x y≡ ≠ ,  0 .zu ≡  (25) 

 

so that, except for ωω ≡z  and ( , )xz yzκ κ , all other components of the rotation vector and the 

curvature tensor vanish. The non-vanishing components of the stress and couple-stress tensors are 

derived from (3), (5) and (21). Vanishing body forces and body couples are assumed in what follows. 

In view of the above, the following kinematic relations are obtained 

 

x
xx

u
x

ε ∂
=

∂
,  y

yy

u
y

ε
∂

=
∂

,  1
2

y x
xy yx

u u
x y

ε ε
∂ ∂

= = + ∂ ∂ 
 , (26) 

1
2

y xu u
x y

ω
∂ ∂

= − ∂ ∂ 
,  xz x

ωκ ∂
=

∂
,  yz y

ωκ ∂
=

∂
 . (27) 

 

Further, the stress and couple-stress equations of equilibrium (1) and (2) are 

 

2 An interesting exposition of the theory under plane-strain conditions was given in the work by Muki and Sternberg 

(1965), and more recently by Gourgiotis and Piccolroaz (2014) including also inertial and micro-inertial effects. 
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0yxxx

x y
σσ ∂∂

+ =
∂ ∂

,      0xy yy

x y
σ σ∂ ∂

+ =
∂ ∂

,     0yzxz
xy yx

mm
x y

σ σ
∂∂

− + + =
∂ ∂

 , (28) 

 

while the constitutive equations furnish 

 

( ) ( ) ( ) ( )1 12 2 1 2xx xx xx yyε µ σ ν σ σ µ ν βθ− − = − + + −   , 

( ) ( ) ( ) ( )1 12 2 1 2yy yy xx yyε µ σ ν σ σ µ ν βθ− − = − + + −   ,  

( ) ( )14xy xy yxε µ σ σ−= +  ,        (29) 

 

and 

 

( ) 124xz xzmκ m
−

=  ,   ( ) 124yz yzmκ m
−

=   , (30) 

 

where µ , ν  and  , in this order, stand for the shear modulus, Poisson’s ratio, and the characteristic 

material length of couple–stress theory (Mindlin and Tiersten, 1962). 

Combing now the previous equations, we obtain the following stress and couple–stress 

equations of compatibility 

 

( ) ( ) ( )
22 2

2 2
2 2 1 2 0yyxx

xx yy xy yxy x x y
σσ ν σ σ σ σ ν β θ

∂∂ ∂
+ − ∇ + − + + − ∇ =

∂ ∂ ∂ ∂
,  (31) 

yzxz mm
y x

∂∂
=

∂ ∂
,          (32) 

( ) ( ) ( )2 22 1 2xz xx xx yy xy yxm
y x

σ ν σ σ ν βθ σ σ∂ ∂ = − − + + − + + ∂ ∂
   ,   (33) 

( ) ( ) ( )2 22 1 2yz yy xx yy xy yxm
x y

σ ν σ σ ν βθ σ σ∂ ∂ = − + + − − + ∂ ∂
  .   (34) 

 

from which follows that only three of the four equations of compatibility are independent. Indeed, 

Eqs. (32)-(34) imply (31), while Eqs. (31), (33) and (34) yield (32) (Mindlin, 1963; Muki and 

Sternberg, 1965).  
11 
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Finally, Mindlin (1963) introduced pertinent stress functions (generalizing the Airy stress 

function of classical elasticity) by showing that the complete solution of equilibrium Eqs. (28) admits 

the following representation 

 
2 2

2xx y x y
σ ∂ Φ ∂ Ψ

= −
∂ ∂ ∂

,     
2 2

2yy x x y
σ ∂ Φ ∂ Ψ

= +
∂ ∂ ∂

, 

2 2

2xy x y y
σ ∂ Φ ∂ Ψ

= − −
∂ ∂ ∂

,  
2 2

2yx x y x
σ ∂ Φ ∂ Ψ

= − +
∂ ∂ ∂

, (35) 

 

and 

 

xzm
x

∂Ψ
=

∂
,  yzm

y
∂Ψ

=
∂

, (36) 

 

where ( ),x yΦ ≡ Φ  and ( ),x yΨ ≡ Ψ  are two arbitrary but sufficiently smooth potentials. 

Substitution of (35) and (36) into (33) and (34) results in the following pair of differential equations, 

for the stress functions 

 

( ) ( ) ( )2 2 2 2 22 1 2 1 2 θν β ν
 ∂ ∂Φ ∂

Ψ − ∇ Ψ = − − ∇ − − ∂ ∂ ∂ 
  

x y y
, (37) 

( ) ( ) ( )2 2 2 2 22 1 2 1 2
y x x

θν β ν∂ ∂Φ ∂ Ψ − ∇ Ψ = − ∇ + − ∂ ∂ ∂ 
   , (38) 

 

which then lead to the uncoupled PDEs 

 

( ) ( )4 21 Φ 1 2 0ν β ν θ− ∇ + − ∇ = , (39) 

2 2 4Ψ Ψ 0∇ − ∇ = . (40) 

 

To these equations we also have to add the equation of heat conductivity. Assuming no internal heat 

sources and steady state conditions, equation (24) simplifies to 
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2 0θ∇ = .           (41) 

 

In addition, from (26)–(29) and (35)–(36), one can obtain the following relations connecting the 

displacement field in terms of Mindlin’s stress functions 

 

( )
2 2

2
2

1 1 2
2

xu
x y x y

ν ν βθ
µ

 ∂ ∂ Φ ∂ Ψ
= − − ∇ Φ + − ∂ ∂ ∂ ∂ 

 ,    (42) 

( )
2 2

2
2

1 1 2
2

yu
y x x y

ν ν βθ
µ

∂  ∂ Φ ∂ Ψ
= + − ∇ Φ + − ∂ ∂ ∂ ∂ 

 ,  (43) 

2 2 2

2 2

1 2
2

yx uu
y x x y x yµ

∂  ∂ ∂ Φ ∂ Ψ ∂ Ψ
+ = − − + ∂ ∂ ∂ ∂ ∂ ∂ 

 . (44) 

 

Note that as the quantities  , Ψx∂ , and Ψy∂  tend to zero, the above representation passes over into 

the classical Airy’s representation. 

 

3. Formulation of the contact problem and boundary conditions 

In this section, the plane-strain problem of an elastic half-plane subjected to the action of a 

perfectly conducting rigid flat hot indentor with sharp square corners is considered (Figure 1a and b). 

The indentor is pressed into the surface through the application of a load P (with dimensions of 

[force][length]–1) normal to the half-plane and a Cartesian coordinate system Oxyz  is considered 

attached at the center line of the flat punch. 

Further, we assume the contact interface between the punch and half-plane to be smooth and 

frictionless, which means that the indentor must be lubricated. The remaining part of the half-plane 

surface is considered to be insulated and traction-free. Heat flow between the solids is only permitted 

to take place by conduction through the contact region. Moreover, the flat punch is at temperature pT  

while the temperature field of the half-plane is denoted by T . Remote regions of the half-plane are 

assumed to be at the natural temperature 0T . In the present analysis, the punch is at higher 

temperature than the indented half–plane, thus excluding the possibility of imperfect contact 

conditions (Barber, 1978). Following normal practice, the effect of elastic deformation on the heat 
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conduction problem is ignored and the thermal boundary conditions are therefore referred to the solid 

in its undeformed state.  

We now postulate that the surface of the half–space 0y = , consists of general regions of 

perfect contact ( x c≤ ), where 2c  is the true contact width and regions of non–contact ( x c> ). In 

each region the appropriate mechanical and thermal boundary conditions read (see Comninou et al., 

1981) 

 

(a) Perfect contact 

 

 

,
,
0

p

y

yy

u
θθ

σ

 =


= ∆
 <

      for    x c≤   and  0y =  ,       (45) 

 

(b) Non-contact 

 

 
0,

0yy

q
σ

=
 =

      for    x c>   and  0y = ,       (46) 

 

where ∆  is a constant acting as a measure of the absolute approach of the contacting bodies, 

0p pT Tθ = − , and ( ) ( ),0yq x q x k yq≡ = − ∂ ∂  is the heat flux through the interface.  

In addition, we note that since no restriction is imposed on xu  and xu y∂ ∂  under the indentor, 

the rotation ω  is arbitrary at the contact area. Thus, by enforcing the principle of virtual power 

(Koiter, 1964), we approximate zero shear and couple tractions under the indentor (Shu and Fleck, 

1998), 

 

( ),0 0yx xσ =    and    ( ),0 0yzm x =      for   x−∞ < < ∞ . (47) 

 

in accordance with the assumption of a frictionless and smooth indentor acting on a traction-free 

half-plane. The above boundary conditions are accompanied by the complementary integral 

conditions 
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( )
c

c
q x dx Q

−
=∫ ,    ( )

c

c
p x dx P

−
=∫ , (48) 

 

where Q  is the total heat flux (positive in the direction pointing to the interior of the half-plane), P  

is the applied (compressive) load, and ( )( ) ,0yyp x xσ= −  is the pressure below the contact area of 

the indentor with the following properties: 

 

( ) 0p x =   ,    x c>       and      ( ) ( ) 0p x p x= − ≥   ,  x c<  . (49) 

 

Finally, since the indented surface is an unbounded region, the above boundary conditions 

must be supplemented by the regularity conditions at infinite distance from the indentor 

 

( ) 0ij rσ →  ,  ( ) 0ijm r →  ,   ( ) 0rθ →     as    ( )1 22 2r x y= + → ∞  . (50) 

Equations (45)-(50) describe our mixed boundary value contact problem in the context of couple-

stress thermoelasticity.  

Following Comninou et al. (1981), the dimensionless parameter 

 

( )
( )

1
1

bQ
kP

ν µα
τ

ν
+

=
−

 ,          (51) 

 

involving all the thermal and mechanical material parameters of the classical thermo-elastic problem, 

can be introduced to define the occurring type of contact under plane-strain conditions. Restricting 

attention to the case of hot punch ( 0Q > ), within the context of classical thermoelasticity3, we 

distinguish the following two cases: 

- if 1.57τ <  the contact is perfect and is maintained throughout the flat punch ( c b= ; 

Figure 1a) 

3 Note that since in the present work the positive vertical axis points towards the interior of the half-plane, we define: 

τ λ= − , where λ  is the respective dimensionless parameter in Comninou et al. (1981) notation. 
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- if 1.57τ >  separation at the edges is attained ( c b< ; Figure 1b). 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of the hot punch problem, namely 0Q > . (a) For small possitive 

values of τ  perfect contact will be maintained throughout the punch ( c b= ), while (b) separation (

c b< ) will occur near the edges for sufficently large possitive values of τ . 

A final notice pertains to the difficulty that arises in 2D contact problems regarding the 

evaluation of the displacements, which is absent in the 3D cases (Johnson, 1985). Indeed, in the 

former case the value of the displacement of a point in a loaded elastic half–plane cannot be 

expressed relatively to a datum located at infinity, due to the fact that the displacements become 

unbounded as ( )lnO r , with r  being the distance from the loaded zone. Thus, the normal 

displacement yu  can only be defined relatively to an arbitrary chosen datum. In physical terms this 

means that the distance ∆  cannot be found by consideration of the local contact stresses alone; it is  

also necessary to consider the stress distribution within the bulk of each body (see also Bower, 

2009). 

 

4. Fourier transform analysis 

 The plane–strain contact problem is attacked with the aid of the Fourier transform on the 

basis of the stress function formulation summarized earlier. The direct Fourier transform and its 

inverse are defined as follows 

 

(a) (b) 
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ˆ ( ) ( ) i xf f x e dxxx
∞

−∞
= ∫  ,        1 ˆ( ) ( )

2
i xf x f e dxx x

π
∞ −

−∞
= ∫  , (52) 

 

where ( )1 21i ≡ − .  

Transforming now the field equations (39)-(41) with (52)1 provides the following ODEs for the 

transformed stress functions and the transformed temperature 

 
4 2

2 4
4 2

ˆ ˆ ˆ2 0d d
dy dy

ξξ Φ Φ
− + Φ =  ,        (53) 

( ) ( )
4 2

2 2 2 2 2 2
4 2

ˆ ˆ ˆ1 2 1 0d d
dy dy

ξξξ  Ψ Ψ
− + + + Ψ =    ,     (54) 

2
2

2

ˆ ˆ 0d
dy

θ ξθ − =  .   (55) 

 

Similarly, the following results are obtained for the Fourier transforms of the stresses, couple–

stresses and displacements 

 
2

2

ˆˆ
ˆ xx

d di
dy dy

σ xΦ Ψ
= +    ,   2

ˆˆˆ yy
di
dy

σ ξξ  Ψ
= − Φ −  , 

2

2

ˆˆ
ˆ xy

d di
dy dy

σ x Φ Ψ
= −    ,   2

ˆ ˆˆ yx
di
dy

σ x xΦ
= − Ψ  ,        (56) 

ˆˆ xzm ix= − Ψ  ,  
ˆ

ˆ yz
dm
dy
Ψ

=  .        (57) 

 

( ) ( )
2

2
2

ˆˆ1 ˆˆˆ 1 1 2
2x

d du i i i
dy dy

ν x νx ν βθ
µx

 Φ Ψ
= − − + Φ + − 

 
   ,   

( ) ( ) ( )
3

2 3
2 3

ˆˆ ˆ1 ˆˆ 1 2 1 2
2y

d d du i
dy dy dy

θν ν ξξ  ν β
µξ

 Φ Φ
= − − − − Ψ + −  

 
 .   (58) 
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The governing equations (53)-(55) have the following general solution that is required to be bounded 

as +∞→y  

 

( ) ( ) ( )1 2Φ̂ , y yy C e C yeξξ ξξξ  − −= +  ,       (59) 

( ) ( ) ( )3 4Ψ̂ , y yy C e C eξ γξξξ  − −= +  ,       (60) 

( ) ( )5
ˆ , ξθξξ   −= yy C e  ,           (61) 

 

where ( ) ( )1 22 21γ γ ξξ ≡ = + . 

Enforcing now the traction boundary conditions (47) results in the following equations for the 

unknown functions ( )iC ξ  

 

( ) ( ) ( ) ( )1
2 1 41C C i Cξξξξξ     γ ξ−= − −   ,      (62) 

( ) ( )1
3 4C Cξ γ ξξ −= −  ,        (63) 

 

where the functions ( )2C ξ  and ( )3C ξ  are related also through the compatibility equations (37) and 

(38) as follows 

 

( ) ( ) ( )2
3 24 1C i Cξ ν ξξ = − −  .        (64) 

 

Further, according to (46)3 and (52)2, we obtain that 

 

( ) ( ) ( ) ( ), ˆˆ ,0 0
ci x i x

yy yy c
x e dx p x e dx px xσ σ xx

∞

−∞ −
= = − = −∫ ∫  ,     (65) 

 

where ( )p̂ ξ  is the transformed pressure distribution below the indentor, which, taking into account  

(56)2, can be written as 
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( ) 2 Ψ̂ˆˆ Φ dp i
dy

ξξξ  = +  .         (66) 

 

Moreover, upon substituting (59) and (60) into (66) for 0y = , and taking also into account 

(62)–(64), we obtain the relation  

 

( ) ( )2
1 ˆC pξξξ  −=  ,         (67) 

 

whereas using (61) and the definition of the heat flux, we derive 

 

( ) ( )11
5 ˆC k qξξξ  −−=  .          (68) 

 

Finally, in view of (62)–(67), the transformed stress functions and the transformed temperature 

become now 

 

( ) ( ) ( ) ( )222
ˆ

4 1
Φ̂ , 1

ye py
y ξξ γ

ξ
ξγ ν ξξ

ξ
γ

− 
= + 

− − − 

 ,     (69) 

( )
( )

( ) ( ) ( )
2

2 2

2

ˆ
4 1

4 1
Ψ̂ ,

y yi e e
py

ξ γξ γ
ξ

γ ν

ν
ξ

ξ

ξ

γξξ

− − − − =
 − −− 

−




 .     (70) 

( ) ( )ˆ ˆ,
ye q

k
y

ξ

ξξ
ξ

q
−

=  .           (71) 

 

5. Singular integral equation approach 

 Our objective now, is the determination of the contact–stress distribution ( )p x  and the heat 

flux distribution ( )q x  under the indentor and the determination of the pertinent contact length when  

 

appropriate. For the solution of the mixed boundary value problem, we employ the method of 

singular integral equations. In classical elasticity, the general procedure of reducing mixed boundary 

value problems to singular integral equations is given, e.g., by Erdogan (1978), while various 
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applications of this approach in classical Contact Mechanics are given in Hills et al. (1993). An 

example of the method within the context of couple-stress elasticity for plane-strain contact problems 

can be found in Zisis et al. (2014). 

 The definition of the inverse Fourier transform in (52)2 together with Eq. (58)2 lead to 

following equation 

 

( ) ( )
3

2 3
3

ˆ ˆ1 Φ Φ ˆ1 2
2 2

y ixdu i d d i e d
dx dy dy

xν ν x x x
π µx

∞

−

−∞

  −
= − − − − Ψ     

⌠

⌡

  

( ) ˆ1 21
2 2

ixi d e d
dy

xν β θ x
π µx

∞

−

−∞

 −
−   

 

⌠

⌡

 ,      (72) 

 

By substituting in the above equation the expressions for the stress functions (69) and (70) at 0y = , 

and taking into account (65), we obtain (Appendix) 

 

( )
( ) ( ) ( ) ( )2 02

11
2 4 1

cy i t

c

xixdu
p t e dt t dt

dx
i

e d qx xν x γ
x d

p µx ν x x γγ −

∞

−

−∞

 =   
−

⋅ +
 − − −

⌠

⌡

∫ ∫


,(73) 

 

where ( )1 kδ ν α= +  is the distortivity.  

In view of (45)2 it follows that 0ydu dx =  for x c≤ . Thus, reversing the order of integration 

in (73), the problem is reduced to the following integral equation 

 

( ) ( ) ( )
0

1 0
c x

c
K x t p t d t dtt qd

µp −
− + =∫ ∫  ,     x c<      (74) 

 

where the kernel ( )K x t−  is defined as 

( ) ( ) ( )( )
0

sin x dx t tK g xx x
∞

−− = ∫  ,        (75) 

 

with 
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( ) ( )
( ) ( )2 2

1
4 1

g
ν g

ν
ξ

ξξ  g g
=

−
− − −

 .       (76) 

 

In Eq. (74), passing to the limit as 0→  and 0δ → , one recovers the classical elasticity 

representation. Now, in order to make the kernel in (75) explicit and separate its singular and regular 

parts, it is necessary to examine the asymptotic behavior of the function ( )g ξ  as ξ → ∞ . Indeed, by 

using theorems of the Abel–Tauber type and noting that ( ) ( ) 1lim
3 2

g g
ξ

νξξ
ν∞→∞

−
= = −

−
, we 

decompose ( )g ξ  as 

 

( ) ( ) ( ) ( )g g g gξξξξ   ∞ ∞= + −    .       (77) 

 

Accordingly, utilizing certain results of the theory of the generalized functions and singular 

distributions (Roos, 1969) the kernel ( )K x t−  becomes 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )
singular part regular part

0 0
sin sinxK x t g gt d x tg dx x x x xx x

∞ ∞

∞ ∞− = −  − − +∫ ∫
(((((((( ((((((((((((

   

                       
( ) ( )1 1
3 2

x t
x t

Nν
ν

−
− +

−
= −

−
  ,       (78) 

where 

 

( )
( ) ( )( )

( ) ( ) ( )( ) ( )( )
2 2 2

2 2

0

2 1 2

3
s n

2 4 1
iN x t x t d

n x γ x γ
x

n γ n x x
x

γ

∞
 − − −
 − = −

− + − −  

⌠


⌡





 ,  (79) 

 

is now a regular kernel for x t→ .  

In view of the above, we obtain the following coupled singular integral equation relating the 

pressure and the heat flux under the indentor 

 

21 

 



Published in International Journal of Solids and Structures, 2015, Vol. 63, pp. 226- 239.        

doi:10.1016/j.ijsolstr.2015.03.002 

( )
( )

( ) ( ) ( ) ( )
0

1 1 0
3 2 c

c

x
c

cp t
dt N p t dt t dtx t q

x t
d

µp µ
ν

pν −
−

− +
−

+ =
− −

− ⌠

⌡ ∫ ∫  ,  x c<  (80) 

 

It should be noted that the first integral in the integral equation (80) is interpreted in the Cauchy 

principal value sense (CPV), whereas the second integral is regular. 

The integral equation for the uncoupled heat conduction problem is derived in an analogous 

manner. Employing the definition of the inverse Fourier transform in (52)2 together with Eq. (71) 

leads to the following equation for the tangential derivative of the temperature at 0y =  

 

( )1 ˆ
2

ixd i q e d
dx k

xq x x x
π x

∞
−

−∞

= − ⌠

⌡

,   (81) 

 

which, after reversing the order of integration and bearing in mind (46)1 and (52)1, can be written as 

 

( ) ( ) ( )1 sgn
2

c
i x t

c

d q t i e d dt
dx k

xq x x
π

∞ − −

−∞−

 = −   
⌠
⌡ ∫ .  (82) 

 

Then, since, the temperature difference is zero at the interface between the rigid indentor and the 

elastic half-plane (c.f. Eq.(45)1) it follows that 0d dxθ =  for x c≤ . The heat-flux problem is then 

reduced to a singular integral equation of the form 

 

( ) 0
c

c

q t
dt

x t−

=
−

⌠

⌡

 ,    x c<  ,    (83) 

 

where the following result of the theory of generalized functions has been utilized (Roos, 1969) 

 

( ) ( ) 2sgn i x ti e d
x t

xx x
∞ − −

−∞
=

−∫ .          (84) 
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The heat-conduction problem defined by (83) and the complementary condition in (48)1 is not 

influenced by the contact stress distribution and is of standard form with solution  

 

( )
( )1 22 2

Qq x
c xπ

=
−

 ,    x c<  .    (85) 

 

Accordingly, substituting this result into equation (80) and after integration, we derive our governing 

singular integral equation characterizing the thermo-elastic contact problem in couple-stress 

elasticity 

 

( ) ( ) ( ) 11 sin 0
3 2

c
c

c
c

p t xdt N p t dtx t
x

Q
ct

n dµ
n

−

−
−

−
−

−  − + + = −  
⌠

⌡ ∫   ,  x c< .  (86) 

 

The latter equation has to be supplemented with the complementary condition: (48)2, for the pressure 

under the indentor. It is noted that Eq. (86) is uncoupled and the last term involving the heat flux 

plays now the role of the loading function. 

The numerical solution of  (86) together with the complementary condition in (48)2 constitutes 

the aim of the remaining analysis. 

 

6. Numerical solution 

The numerical solution of the singular integral equation (86) is accomplished utilizing the 

appropriate collocation method. To this purpose, the following normalizations are adopted: x x c= , 

t t c=  and c=

  . The governing singular integral equation takes then the following form 

 

( ) ( ) ( ) ( )
1

1 1

1
1

1 sin 0
3 2

p t
dt N t p t dt Qx x

tx
n dµ
n

−

−
−

−
−

−
− + + =

−
⌠

⌡ ∫ 





  







    ,     1x <  ,  (87) 

whereas, the complementary condition in (48)2 becomes 

 
1 1

1
( )p t dt Pc−

−
=∫   ,         (88) 
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and the regular kernel ( )xN t−



  is defined as 

 

( )
( ) ( )( )

( ) ( ) ( )( ) ( )( )
2 2 2

2 2

0

2 1 2
si

3 4 1
n

2
x t x t dN

n ζ γ ζ
ζ

γ
ζ

n γ n ζ γ ζ

∞
 − − −
 − = −

− + − −  

⌠


⌡



 


 

 










 ,   (89) 

 

with cζ ξ=  and ( )1 22 21γ ζ= +


 . The above convergent integral is a Fourier sine transform and 

can be efficiently evaluated numerically employing numerical algorithms that take into account its 

oscillatory character.  

In what follows, we distinguish two cases, depending on the magnitude of the total heat flux 

and the material properties, which may occur during the thermo-elastic contact of a hot flat punch. 

 

6.1 Perfect contact problem ( c b= )  

In this case, the contact is perfect throughout the flat punch and c b=  (Figure 1a). The 

Cauchy singular integral in Eq. (87) dominates the bounded kernel ( )xN t−



  and therefore 

determines the nature of the singularity in the pressure ( )p t  at 1t = ± . Accordingly, guided by the 

results concerning the modification of stress singularities in the presence of couple stresses (Muki 

and Sternberg, 1965; Zisis et al. 2014), we introduce the appropriate unbounded fundamental 

solution by defining 

 

( ) ( )( ) 1 22

0
1n n

n
p t a T t t

∞ −

=

= −∑    ,    1t ≤   ,      (90) 

 

where ( )nT t  are the Chebyshev polynomials of the first kind (see e.g. Abramowitz and Stegun, 

1972). We note that by assuming the above pressure representation, the classical square–root stress 

singularity at the corners of the punch is retained also in the couple stress theory. Now, substituting 

(90) into the integral equation (87), one arrives at 
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( )
( ) ( )

( )
( )

( ) ( )
1 1

1
1 2 1 22 2

0
1 1

1 sin 0
3 2 1 1

n n
n

n

T t T t
a dt N t dt Q

xt
x x

t t
n d µ
n

∞
−

=
− −

−
 − − + + = − − −  −

⌠ ⌠
  
⌡ ⌡

∑
 

 





  

  

,  1x <

.             (91) 

Further, by employing the orthogonality properties of the Chebyshev polynomials of the first 

kind, the complementary condition in (88) yields: ( ) 1
0a P bπ −= , where 2b  is the width of the flat 

punch. The CPV integral in (91) is evaluated by using the following properties of Chebyshev 

polynomials (Erdogan and Gupta, 1972) 

 

( )
( ) ( ) ( )

1

1 22
11

0, if 0
, if 11

n

n

nT t
dt

xx U nt t π −−

=
= − ≥− −

⌠

⌡





 





  ,    1x <  ,   (92) 

 

where ( )nU x  are Chebyshev polynomials of the second kind. The second integral in (91) is regular 

and can be readily obtained by the Gauss–Chebyshev quadrature method. Consequently, the singular 

integral equation (91) takes the following functional form 

 

( ) ( ) ( ) ( )1
1

0

1
sin 0

3 2n n n
n

a U h Qx x x
n π

δµ
n

∞
−

−
=

− 
+ + = − 

∑     ,   1x <  ,   (93) 

 

with ( ) ( )( ) ( )
1 1 22

1
1n nh T t t N t dx tx

−

−
= − −∫ 



 

   .  

Now, Eq. (93) is solved by truncating the series at n N=  and using an appropriate collocation 

technique with collocation points chosen as the roots of ( )NU x , viz. ( )( )cos 1jx j N= + π  with 

1,2,...,j N= . In this way, a system of N  linear algebraic equations is formed that enables us to 

evaluate the remaining N  coefficients na  ( 1,...,n N= ) and, consequently, the desired pressure 

distribution. 

 

6.2  Separation problem ( c b< ) 

Increasing the values of τ  (Eq. (51)), the previous solution predicts tensile contact stresses at 

the vicinity of the edges of the contact area and thus separation is anticipated to occur in this region  
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(see Figure 1b). In this case, the solution methodology is similar to the previous one except that the 

length 2c  ( c b< ) is now unknown and depends upon τ  and the microstructural length scale  . 

When the separation regime is considered, the contact tractions are not singular at the 

separation line x c= ± . Accordingly, bearing in mind that the governing singular integral equation 

has qualitatively the same general form with the respective one in the classical theory (with the 

addition of the regular kernel), we assume the following pressure distribution under the indentor 

(Zisis et al. 2014)  

 

( ) ( )( )1 22

0
1n n

n
p t b U t t

∞

=

= −∑     , 1t ≤        (94) 

 

In this case, the integral equation in (87) becomes 

 

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 22
1 1 22 1

1
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1

11 1 sin 0
3 2

n
n n

n

U t t
b dt U t t N t dt Q
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x x

x
n dµ
n

∞
−

−
=

−

 −− − + − + = − 
−


−

⌠

⌡

∑ ∫
 



   



 



 ,  1x <   

            (95) 

The first integral in (95), is evaluated as a CPV integral by using the following relation (Erdogan and 

Gupta, 1972) 

 

( ) ( )
( ) ( )

1 1 22

1

1

1n
n

U t t
dt T

t
x

x
π +

−

−
=

−

⌠

⌡

 









    for   0n ≥  ,   1x <  .        (96) 

 

Accordingly, one reaches the following functional equation that can be used in the numerical 

discretization 

 

( ) ( ) ( ) ( )1
1

0

1
sin 0

3 2n n n
n

b T wx x xQ
n π

δ µ
n

∞
−

+
=

− 
− + + = − 

∑     ,  1x <    (97) 

 

where ( ) ( ) ( ) ( )
1 1 22

1
1n nw x U t t N x t dt

−
− −= ∫ 

   

   is a regular integral which can be evaluated by the 

standard Gauss–Chebyshev quadrature method. Eq. (97) is solved by truncating the series at n N=  
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and using an appropriate collocation technique with collocation points chosen as the roots of 

( )1NT x+  , viz. ( ) ( )( )( )cos 2 1 2 1jx j N= − + π  with 1, 2,..., 1j N= +  which is solved in the least 

square sense. In this way, a system of 1N +  linear algebraic equations is formed for the 1N +  

coefficients nb . It is noted that since the index of the pertinent singular integral equation is: 1κ = − , 

the complementary condition (54) is not necessary for the computation of the system coefficients but 

is essential for the evaluation of the unknown contact area 2c . In general, in such cases where no 

stress singularity occurs at the ends of the contact area, a consistency condition should be also 

considered (see e.g. Gakhov, 1966). However, it can be shown that in our case this condition is 

identically satisfied. Finally, in order to avoid iterations, it is instrumental to assume the contact 

length c  and the ratio c  as given values for computing the required value of the dimensionless 

parameter τ  in (51) and accordingly the pressure, for a given Poisson’s ratio and indented load P .  

 

7.  Results and discussion 

We now proceed to the discussion of the numerical results. In classical thermoelasticity, the 

single dimensionless parameter τ , which is defined in (51) and depends upon ν  , characterizes 

completely the response of the system and the type of contact (Comninou et al., 1981). On the other 

hand, in the couple-stress elasticity formulation the Poisson’s ratio has an explicit effect in both the 

mechanical and the thermal responses of the medium and, thus, should be treated independently (an 

analogous situation was encountered in Muki and Sternberg, 1965; and Zisis et al., 2014). For this 

reason, in the present study, a more appropriate definition of such a dimensionless parameter would 

be the following, 

 

* 1
1

bQ
kP

µα ντ τ
ν

−
= =

+
 .          (98) 

 

The limit values of τ  ( *
critt  or critt ) defining the transition from perfect contact to separation for the 

microstructured solid are also dictated by the dimensionless parameter b , as illustrated in Figure 2. 

For clarity and for direct comparison with the classical solution of Comninou et al., 1981, results are 

reported here for both *
critt  and critt . 
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Figure 2: The effect of the microstructural length b  upon the critical values of the dimensionless 

parameters *
critt  and critt . The critical values of (a) *

critt  or (b) critt  that define the type of contact 

depend strongly upon b . The region below each curve suggests perfect contact while the region 

above suggests separation. 

 

 

Figure 2 depicts the dependence upon the ratio b of the critical values of the dimensionless 

parameters *
critt  and critt  at which separation succeeds perfect contact. In Figure 2b, at the limit 

0b =  (classical thermoelasticity), all curves converge to the value 1.57critt ≈  (Comninou et al., 

1981) independently of the Poisson’s ratio. As it was shown by Comninou et al., 1981, for 1.57critt >  

(or { }* 1.57;0.84;0.52critt >  for { }0; 0.3; 0.5ν = , respectively) separation occurs at the punch corners 

leaving a reduced contact area. On the other hand, in the case of couple–stress thermoelasticity this 

result is affected by the internal length scale. It is observed that as b  increases, the value of the 

parameter *
critt  decreases monotonically attaining a constant value depending upon the Poisson’s 

ratio ν . This implies that in a microstructured material separation will occur for smaller values of  

the ratio Q P . For example, and for the range of calculations that are carried out in the present 

work, at 1b =  and 0ν =  the parameter *
critt  decreases by about 50% suggesting that separation 
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characteristics will be attained at essentially half the Q P  ratio that corresponds to classical 

thermoelasticity.  

 

7.1 Perfect contact ( c b= ) 

 Within the perfect contact regime a square root singularity in the pressure distribution is 

observed at the sharp edges of the punch as in the case of classical thermoelasticity (Figure 3). In the 

limit 0b = , the present results reduce to the corresponding ones attained for the classical 

thermoelasticity (Comninou et al., 1981), while in the limit * 0τ =  reduce to those attained by Muki 

and Sternberg (1965) and Zisis et al. (2014). We should note that, excluding the thermal effects, as 

/ b  increases from zero, the results regarding the pressure below the indenter depart from those 

predicted by classical elasticity. In fact, it is has been shown by Muki and Sternberg (1965) and Zisis 

et al. (2014) that at small values of the ratio / b  the couple-stress effects are more pronounced 

leading to an increased deviation from the classical elasticity solution. The boundary layer effect near 

the corners of the punch is more apparent for / 0.99x b =  and / 1x b −→ , where the pressure below 

the indenter with increasing / b  follows an initial steep descent below the classical pressure-ratio of 

unity, then rises to a maximum above unity and finally steadily approaches the asymptotic value of 

unity as b → ∞ . Furthermore, it has been shown that deviation from the classical elasticity 

solution, even though less pronounced, is not only attained near the punch corners ( / 0.99x b = ) but 

also close to the center of the punch ( / 0x b = ) for small ratios of / b . 

It is observed that, for fixed b , as *τ  increases, departing from * 0τ =  (no thermal effects), 

the pressure below the indentor increases at the center of the contact ( 0x = ). A stiffer response is 

attained for increasing Poisson’s ratio (Figure 3). Moreover, as it is illustrated in Figure 3, for a 

microstructured material with 0.2b = , the transition between the two types of contact is attained at 
* 1.095τ =  for 0ν = , and * 0.423τ =  for 0.5ν =  (dashed lines in Figure 3). In these cases, the 

pressure at the corners of the indentor is bounded and equal to zero. 
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Figure 3: Pressure distributions for selected values of *τ  at fixed b  for Poisson’s ratio (a) 0ν =  

and (b) 0.5ν = . Only half of the indentor ( 0x ≥ ) is presented due to symmetry. Results for the limit 

value of *τ  at the corresponding b  and ν  are also shown (- - -). 

 

 

The influence of couple-stresses upon the pressure distribution is brought out more clearly in 

Figure 4, where the ratio  of the modified to the classical pressure ( ) ( )clp x p x  is plotted as a 

function of x b  for various values of b , *τ  and ν . It is observed that for increasing *τ , the 

pressure below the indentor increases and is affected by the magnitude of the normalized 

characteristic length b  and the Poisson’s ratio ν . An evident deviation from the classical pressure 

distribution is found, at small values of b , in a relative narrow band near the corners of the punch, 

revealing thus a boundary layer effect. 
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These results may also be seen in conjunction with Figure 5. When thermal effects are 

excluded ( *τ =0), the curves depart from and then approach the classical elasticity results as b  

increases from zero. Indeed, the limiting values of ( )0 0p p≡  at 0b = and b → ∞  coincide (see 

Muki and Sternberg, 1967 and Zisis et al., 2014). On the other hand when * 0τ > , the behavior is 

strongly influenced by the deformation induced by the thermal effects. The dashed line suggests the 

limiting values of the ratio b  at fixed *τ  further from which the type of contact changes from 

perfect to separation. Results are shown only for the case of perfect contact throughout the flat 

punch. The classical thermoelasticity solution is represented by the single points at 0b = . For all 

the cases, as b  increases from zero, the pressure below the indentor departs from that predicted by 

the classical thermoelasticity, initially decreases and then increases again attaining a constant value  

(greater than the classical thermoelasticity solution) as b → ∞  that depends upon *τ . For example, 

when 0ν =  and * 0.75τ =  the pressure below the indentor at 0x =  reduces to a minimum value 

attained at 0.2b ≈  and then rapidly increases with increasing b  up to 0 0.55p b P ≈ . Further 

increase of b  (for * 0.75τ = ) suggests that the contact characteristics will change and separation 

near the corners of the punch will be attained. Similar results can be observed in the incompressible 

limit 0.5ν = . 

 Finally, we note that since the singular fields for sharp edge contacts and for cracked bodies 

suggest similarities (Giannakopoulos et al, 1998), it is of interest to present an equivalent to the 

Mode I stress intensity factor for a double edge cracked infinite plate (containing two semi-infinite 

cracks whose tips are separated by a distance of 2b ). The equivalent stress intensity factor in couple-

stress elasticity (given here for the right edge) is defined as  

 

( ) ( )( )lim 2I
x b

K p x b xp
−→

= −  , (99) 

 

whereas in the classical elasticity case, the respective stress intensity factor is: ( ) 1 2
,I classK P bπ −=  

corresponding to a pressure distribution ( ) ( ) 1 21 2 2
clp x P b xp

−−= − .  

 

 
32 

 



Published in International Journal of Solids and Structures, 2015, Vol. 63, pp. 226- 239.        

doi:10.1016/j.ijsolstr.2015.03.002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Normalized pressure 0p b P  as a function of the normalized micromechanical length b  

for selected values of *τ  for Poisson’s ratios (a) 0ν =  and (b) 0.5ν = . The values of 0p  at the limit 

between perfect contact and separation are also shown. (c) Normalized stress intensity factor for the 

analogous to the flat punch contact problem infinite plate with a double edged crack as a function of 

b  and selected values of *τ  and Poisson’s ratios. 
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The variation of the ratio , ,I cs I clasK K  (for the same values of the parameter *τ ) with respect 

to b is illustrated in Figure 5(c). It is observed that the ratio exhibits a finite jump discontinuity at 

0b → , indeed, , ,I cs I clasK K  rises abruptly as b  departs from zero and then declines 

monotonically with increasing values of b . This discontinuous behavior appears to be typical of 

the severe boundary-layer effects predicted by the couple-stress theory in singular stress-

concentration problems (Muki and Sternberg, 1965; Zisis et al., 2014; Gourgiotis and Piccolroaz, 

2014). Furthermore, it is noted that as *τ  increases the ratio , ,I cs I clasK K  falls below unity. In 

particular, when *τ  grows beyond a critical value * *
crittt >  the ratio , ,I cs I clasK K  becomes zero for 

certain values of b  (e.g. dashed curve - 0.5ν =  and * 0.4τ = ). This is due to the fact that the 

separation in couple-stress elasticity occurs in lower values of *
critt  than on the classical elasticity 

case (see Figure 2). 

 

7.2 Separation ( c b< ) 

 Further increase of *τ  and depending upon the characteristic material length   and Poisson’s 

ratio ν , separation will occur at the edges of the punch leaving a region of perfect contact 2c  with 

c b< . Figure 6 presents pressure distributions below the punch for different values of *τ  at fixed 

c  and pressure distributions for different values of c  at fixed *τ . The effect of Poisson’s ratio is 

also shown. It is concluded that as *τ  increases, the contact width reduces, increasing the pressure 

below the indentor. The response is similar for increasing microstructural length c . As intuitively 

expected, the stiffness of the response increases with increasing Poisson’s ratio. 

Finally, results regarding the contact width and the average pressure 2avp P c=  are 

summarized in Figures 7a and 7b and their dependence upon the microstructural length   for 

different values of *τ  and different Poisson’s ratios ν  is explored. It is observed that for increasing 

c , increasing ν  and increasing *τ  the measured contact width decreases, while the average 

pressure increases suggesting a stiffer material response. It can be seen that at the two classical (

0c = ) thermoelasticity limits * 1.57critt =  and * 0.524critt =  for 0ν =  and 0.5ν =  respectively, no 

separation is observed (i.e. 1c b = ) as expected but immediately for increasing values of c  the 

contact changes from perfect to separation. For smaller values of *τ  the contact is perfect throughout  
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the flat punch up to a certain value of the ratio c . Beyond this limit the contact type changes to 

separation at the edges of the indenter. For example, as it is shown in Figure 7a, for *( , ) (1,0)τ ν =  or 
*( , ) (0.4,0.5)τ ν =  perfect contact is attained up to 0.3c < , however, for further increase of c  

separation will take place at the edges of the indenter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Pressure distributions for (a) selected values of *τ  at fixed c  and (b) selected values of 
c  at fixed *τ . Only half of the domain is presented due to symmetry. Results are shown for 

Poisson’s ratios 0ν =  and 0.5ν = . 
 

 

 

 

 

 

 

 

 

 

 

Figure 7: (a) The normalized contact width c b  and (b) the normalized average pressure 2 avp b P  
exerted at the indentor. Both are shown as functions of the micromechanical length c  for selected 
values of *τ . Results are shown for Poisson’s ratio 0ν =  and 0.5ν = . 
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8. Conclusions 

In the present study, we derived general solutions for a basic two–dimensional plane strain 

contact problem within the framework of the generalized continuum theory of couple–stress 

thermoelasticity. The problem of the indentation of a deformable half–plane by a hot flat punch has 

been investigated, solving the singular integral equations resulted from a treatment of the mixed 

boundary value problems via integral transforms and generalized functions. 

The attained solution describes a mechanical response strongly affected by the characteristic 

material length, exhibiting significant departure from the predictions of classical thermoelasticity. 

Indeed, when the material microstructure is taken into account ( 0≠ ), the limits in terms of heat 

flux (assuming fixed applied load and material properties) at which the type of contact transits from 

perfect to separation vary significantly compared to the classical thermoelasticity results (Comninou 

et al., 1981). Moreover, as the characteristic material length   increases, with respect to the contact 

width, a stiffer material response is attained. 

In light of the above, contact phenomena in microstructured materials cannot be adequately 

described through classical contact mechanics. 

 

Appendix 

Here, we show that the last terms on the RHS of Eqs. (72) and (73) respectively, are equal, i.e. 

 

( ) ( )
0

ˆ1 21
2 2

xixi d e d t dt
dy

qxν β q
µ x

dx
π

∞

−

−∞

 −
− =  

 

⌠

⌡

∫ .     (A1) 

 

where δ  is the distortivity defined as ( ) ( )1 2 2 1k kδ ν β µ ν α= − = + . 

To this end, we define the function 

 

( ) ( )ˆ ,01
2

ixdiF x e d
dy

xθ x
x

π x

∞

−

−∞

= −
⌠

⌡

 .       (A2) 

 

Differentiating with respect to x  and recalling that ( ) ( )ˆˆ ,0q k d dyξ q ξ= − , yields 

36 

 



Published in International Journal of Solids and Structures, 2015, Vol. 63, pp. 226- 239.        

doi:10.1016/j.ijsolstr.2015.03.002 

( ) ( ) ( ) ( )ˆ ,01 1 ˆ
2 2

ix ixdF x d q x
e d q e d

dx dy k k
x xq x

x x x
π π

∞
∞− −

−∞
−∞

= − = =
⌠

⌡

∫  ,     (A3) 

 

and, accordingly 

 

( ) ( ) 0
1 x

c
F x q t dt d

k −
= +∫ ,         (A4) 

 

where 0d  is an arbitrary constant. Due to the symmetry of the problem, the heat flux ( )q x  is an even 

function for x c<  and, thus, ( )F x  is odd with ( ) ( )F c F c= − − . Then, using (A4) and the 

complementary condition in (48)1, we obtain 

 

( ) ( ) 0 0
1 c

c

QF c q t dt d d
k k−

= + = +∫       and      ( ) 0F c d− =       (A5) 

 

and, consequently, 0 2d Q k= − . 

In view of the above, Eq. (A4) can be finally written as 

( ) ( ) ( ) ( ) ( )
0

0 0

1 1 1 1
2 2

x x x

c c

Q QF x q t dt q t dt q t dt q t dt
k k k k k k− −

= − = + − =∫ ∫ ∫ ∫   ,  (A6) 

 

which readily shows that (A1) holds. 
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