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Abstract

Snapping mechanisms are investigated for an elastic strip with ends imposed to move and ro-
tate in time. Attacking the problem analytically via Euler’s elastica and the second variation of
the total potential energy, the number of stable equilibrium configurations is disclosed by varying
the kinematics of the strip ends. This result leads to the definition of a ‘universal snap surface’,
collecting the sets of critical boundary conditions for which the system snaps. The elastic energy
release at snapping is also investigated, providing useful insights for the optimization of impulsive
motion. The theoretical predictions are finally validated through comparisons with experimental
results and finite element simulations, both fully confirming the reliability of the introduced uni-
versal surface. The presented analysis may find applications in a wide range of technological fields,
as for instance energy harvesting and jumping robots.
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1 Introduction

Snap instability is a well-known phenomenon in mechanics for which a structural system suffers a
sudden and dramatic change in the deformed configuration triggered by a small variation in the loading
conditions. This behaviour is explained as the consequence of the stability loss for the deformed
configuration, so that the structure dynamically moves towards a non-adjacent configuration through
a partial release of its elastic energy. Classical examples of snap mechanisms can be found in shell
structures, also in everyday life, as for instance when squeezing an empty can of soda. Other examples
may be found in nature, as in the case of click-beetles (elateridae) [14], insects able to turn on their
side when initially lying on their back by means of a jump realized by a snap mechanism.

Following the new paradigm of exploiting (instead of avoiding) instabilities in the structural de-
sign for advanced applications [17, 29], in the last years many researchers have investigated the snap
mechanisms towards the realization of bistable or multistable devices [2, 9, 10, 11, 12, 13, 30, 32],
metamaterials [15, 25, 28], locomotion [24, 33, 34, 35], and energy harvesting [16, 18]. Because the
typical approach adopted in these investigations is to focus on specific evolutive mechanical problems
and specific structural properties, the evaluation of the whole set of critical snap conditions is missed
from a general perspective.

1Corresponding author: Francesco Dal Corso fax: +39 0461 282599; tel.: +39 0461 282522; web-site:
http://www.ing.unitn.it/∼dalcorsf/; e-mail: francesco.dalcorso@unitn.it
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The aim of the present study is to provide a general criterion to be exploited in the nonlinear design
of structures to obtain (or to avoid) snap mechanisms. With reference to the model of an inextensi-
ble (weightless) linearly elastic strip, the number of stable equilibrium configurations is disclosed by
varying the parameters defining the kinematics of the strip ends, which are reduced to a normalized
distance between the two ends and the two rotations of the ends. The stability of the equilibrium
configurations, expressed in closed form through elliptic integrals, is assessed analyzing the sign of the
second variation of the total potential energy at fixed ends conditions. This analysis allows us to define
the correspondence between the ends’ kinematics and the presence of multiple stable configurations, so
that the set of boundary conditions for which one of these configurations loses its stability follows.

The obtained results are used to define universal snap surfaces, collecting the whole sets of critical
boundary conditions for which the system snaps. The energy release at snapping is also estimated
and investigated by means of a dimensionless analysis for varying the snap conditions. The theoretical
predictions, obtained analytically within a quasi-static framework, are experimentally validated through
comparisons with data available for specific symmetric boundary conditions and observations on a
physical model proposed for investigating non-symmetric boundary conditions. Finally, finite element
simulations performed with ABAQUS show the reliability of the presented universal surface in the case
of evolutions with moderate velocity and its limits in the case of very fast ends evolutions.

2 Governing equations and the planar elastica

An inextensible elastic strip of length l is considered to be deformed within a plane orthogonal to the
axis of minimum momenta of inertia of the strip’s cross section. The strip has a uniform cross section
and is initially flat, so that its centerline is described by a straight line in the undeformed configuration.
Neglecting the effects of self weight and disregarding rigid body motions, the mechanical fields along
the generic curvilinear coordinate s ∈ [0, l] can be represented in the local reference system x − y
(Fig. 1), with origin at one strip’s end (s = 0), and x-axis passing by the other one (s = l), so that
x(0) = y(0) = y(l) = 0, and pointing from the initial to the final curvilinear coordinate. The primary
kinematic field is the rotation angle θ(s), which measures the rotation of the structure’s centerline with
respect to the x-axis, from which, considering the inextensibility constraint, the position fields can be
obtained as

x(s) =

∫ s

0

cos θ(ς) dς, y(s) =

∫ s

0

sin θ(ς) dς, (1)

so that the condition y(l) = 0 implies the following isoperimetric constraint on the rotation field θ(s)∫ l

0

sin θ(s) ds = 0. (2)

The strip is considered subject to kinematic boundary conditions in terms of position and rotation
at both ends, which slowly move in time along quasi-static evolutions. Considering the x− y reference
system allows for the rational interpretation of the boundary conditions imposed at the two rod’s ends.
Indeed, the six kinematic boundary conditions (two positions and one rotation at each end) affect the
strip configuration by means of the following three primary kinematical quantities

x(l) = d, θ(0) = θ0, θ(l) = θl, (3)

being d the distance between the two clamps, d ∈ [0, l] where the lower bound is given by the definition
of the x-axis direction while the upper bound is related to the inextensibility assumption (although
extensibility may affect the mechanical response even in the proximity of the limit condition, d ' l).
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Figure 1: Generic deformed configuration for a strip of length l with kinematically controlled ends within the absolute
reference system X − Y and the relative reference system x− y. Neglecting rigid-body motions, the equilibrium config-
uration is dependent only on the three independent kinematic quantities d, θ0, and θl. Reaction forces and moments at
the two controlled ends are also reported.

The planar behaviour of the considered strip is modelled as the Euler elastica so that the bending
moment M is given by M(s) = Bθ′(s) where the symbol ′ stands for the derivative with respect to
the curvilinear coordinate s and B is the bending stiffness, constant because the strip’s cross section is
uniform. Considering that the deformed configuration is described by imposing the distance d and the
two rotations θ0 and θl, the total potential energy V under quasi-static conditions is given by

V
(
θ(s)

)
= E +Rx

[
−d+

∫ l

0

cos θ(s) ds

]
+Ry

[∫ l

0

sin θ(s) ds

]
+Ml

[
θl − θ(l)

]
−M0

[
θ0 − θ(0)

]
, (4)

where E is the elastic energy stored within the strip

E =
B

2

∫ l

0

θ′(s)
2

ds, (5)

while the quantities Rx and Ry are the Lagrangian multipliers representing the reaction forces compo-
nents at both ends along the x and y directions and, similarly, Ml and M0 are those referred to the
rotational degrees of freedom of the strip’s coordinates s = l and s = 0.

The annihilation of the first variation of the functional V leads to the differential equation of the
Euler elastica [6]

ψ′′(s) + γ2 sinψ(s) = 0 ∀s ∈ [0, l]. (6)

being ψ(s) = θ(s) − β the auxiliary angle, γ2 = R/B the normalized load parameter, R =
√
R2
x +R2

y

the total reaction force and β its inclination with respect to the x-axis (Fig 1).
A first integration of the equation (6) leads to

ψ′(s) = ±γ
√

2
√

cosψ(s) + Υ, (7)

where Υ is the constant of integration to be evaluated with reference to the boundary conditions and
defining the elastica as a part of a non-inflectional mother curve (Υ ∈ [1,∞]) or an inflectional mother
curve (Υ ∈ [−1, 1]) [22].
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In the following paragraphs, the analytical description of the deformed configurations is presented
with reference to the number m ∈ N0 of ‘inflection points’, corresponding to the curvilinear coordinates
within the set s ∈ (0, l) where the curvature vanishes. It is remarked that points with null curvature
located at both ends are not considered in the definition of m. For convenience, the constant of
integration Υ is defined distinguishing the fundamental cases of the absence (m = 0) and the presence
(m 6= 0) of inflection points and the deformed configurations are described, respectively, in terms of
the equations related to the so-called non-inflectional and inflectional elastica. Therefore it is worth
to remark that, differently from Love [22], the deformed configurations with m = 0 associated with
an inflectional mother curve are here described for simplicity through the expressions used for the
non-inflectional mother curve (for which the ideal unlimited elastica, −∞ < s < ∞, has no inflection
points) but restricted to the physical range of the curvilinear coordinate, s ∈ [0, l] (as shown in Sect.
3).

Absence of inflection points along the strip (m = 0). In this case ψ′(s) 6= 0 for s ∈ (0, l) and
the integration constant Υ can be defined as a function of an unknown parameter ξ as

Υ =
2− ξ2

ξ2
, ξ ∈

0,

√√√√ 2

1− min
s∈(0,l)

{cosψ(s)}

 , (8)

where the upper bound for the parameter ξ restricts the solution at equilibrium to non-null curvature
values within the set s ∈ (0, l). It is noted that, differently from Love [22], the range of ξ is extended
to values higher than 1, which are related to inflectional mother curves.

Furthermore, an auxiliary rotation field is introduced as χ(s) = ψ(s)/2 whose values at the two
ends are defined as χ(0) = χ0 and χ(l) = χl, given by

χ0 =
θ0 − β

2
, χl =

θl − β
2

. (9)

Presence of m inflection points along the strip (m 6= 0). In this case ψ′(ŝj) = 0 at the curvilinear
coordinates ŝj ∈ (0, l) with j ∈ [1,m] ordering the inflection points with respect to their curvilinear
coordinate, ŝj < ŝj+1 . Eqn (7) implies that the integration constant Υ is a function of the angle

ψ(ŝ1) = ψ̂1 measured at the inflection point along the strip and closest to the origin as

Υ = − cos ψ̂1. (10)

Being cos ψ̂j = cos ψ̂1 with ψ(ŝj) = ψ̂j (j = 1, ...,m), the rotation angle at the j-th inflection point is
given by

θ(ŝj) = −(−1)jθ(ŝ1) +
[
1 + (−1)j

]
β. (11)

Because the curvature changes sign at each inflection point, the solution (7) for the curvature can be
rewritten as

ψ′(s) =


(−1)pγ

√
2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [0, ŝ1],

(−1)p(−1)jγ
√

2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [ŝj, ŝj+1] ∀ j ∈ [1,m− 1],

(−1)p(−1)mγ
√

2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [ŝm, l],

(12)
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where p is a boolean parameter defining the curvature sign at the left end s = 0, namely p = 0 (p = 1)
when the curvature is positive (negative) at the left end, θ′(s = 0) > 0 (θ′(s = 0) < 0).1 Towards the
solution achievement it is instrumental to introduce the parameter η ∈ [0, 1] and the auxiliary field
ω(s) defined as

η = sin
ψ̂1

2
, η sinω(s) = sin

ψ(s)

2
. (13)

The values of the function ω(s) attained at the two ends, ω(s = 0) = ω0 and ω(s = l) = ωl, represent
the fundamental parameters involved in the problem resolution and depend on the parameters β and η
as follows:

ω0 = arcsin

(
1

η
sin

θ0 − β
2

)
, ωl = (−1)m arcsin

(
1

η
sin

θl − β
2

)
+ (−1)pmπ. (14)

3 The elasticae joining two constrained ends

A further integration of the differential equation (7) leads to the following relations for the normalized
load γ

γl =

{
ξ |K(χl, ξ)−K(χ0, ξ)| , m = 0,

|K(ωl, η)−K(ω0, η)| , m 6= 0,
(15)

and the rotation field

θ(s) =


β + 2 am

(s
l

(K(χl, ξ)−K(χ0, ξ)) +K(χ0, ξ), ξ
)
, m = 0,

β + 2 arcsin
[
η sn

(s
l

(K(ωl, η)−K(ω0, η)) +K(ω0, η), η
)]
, m 6= 0.

(16)

In equations (15) and (16), K is the Jacobi’s incomplete elliptic integral of the first kind, am is the
Jacobi’s amplitude function, sn is the Jacobi’s sine amplitude function,

K (σ, ϕ) =

∫ σ

0

dφ√
1− ϕ2 sin2 φ

, σ = am

(
K (σ, ϕ) , ϕ

)
, sn(u, ϕ) = sin (am(u, ϕ)). (17)

It is remarked that, when the deformed configuration is associated with an inflectional mother curve,
Υ ∈ [−1, 1], but there are no inflection points along the strip, m = 0, the analytical representation of
the normalized load γ, eqn (15), and of the rotation field θ(s), eqn (16), for the case m = 0 coincides
with that for the case m 6= 0.2

1In the case of null curvature at the initial coordinate, θ′(s = 0) = 0, the boolean p is defined by the sign of the
curvature at positive infinitesimal values of the coordinate, θ′(s = 0+).

2In addition to the general property for the reciprocal modulus transformation for the Jacobi’s sine amplitude function
(Byrd [8], his eqn 162.01, pag 38)

sn

(
σϕ,

1

ϕ

)
= ϕ sn (σ, ϕ) , (18)

under the circumstance Υ ∈ [−1, 1] and m = 0 the following properties hold:

ξ = 1/η, sinω(s) = ξ sinχ(s), K (ω(s), η) = ξK (χ(s), ξ) . (19)
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From the rotation field (16), the elastic energy E , eqn(5), is given by

E =


2B

l

[
K(χl, ξ)−K(χ0, ξ)

][
E(χl, ξ)− E(χ0, ξ)

]
, m = 0,

2B

l

[
K(ωl, η)−K(ω0, η)

]{
E(ωl, η)− E(ω0, η)− (1− η2)[K(ωl, η)−K(ω0, η)

]}
, m 6= 0,

(20)
and the deformed shape at equilibrium can be evaluated from the position field (1) and expressed as

x(s) =
[

cos βAm(s) + sin β Bm(s)
]
l, y(s) =

[
sin βAm(s)− cos β Bm(s)

]
l (21)

with the functions Am(s) and Bm(s) given by

Am(s) =


2

ξ2

E
(s
l

(K(χl, ξ)−K(χ0, ξ)) +K(χ0, ξ), ξ
)

+ E (K(χ0, ξ), ξ)

K(χl, ξ)−K(χ0, ξ)
− 2− ξ2

ξ2
s

l
, m = 0,

2
E
(s
l

(K(ωl, η)−K(ω0, η)) +K(ω0, η), η
)
− E (K(ω0, η), η)

K(ωl, η)−K(ω0, η)
− s

l
, m 6= 0,

(22a)

Bm(s) =


2

ξ2

dn
(s
l

(K(χl, ξ)−K(χ0, ξ)) +K(χ0, ξ), ξ
)
− dn (K(χ0, ξ), ξ)

K(χl, ξ)−K(χ0, ξ)
, m = 0,

2 η
cn
(s
l

(K(ωl, η)−K(ω0, η)) +K(ω0, η), η
)
− cn (K(ω0, η), η)

K(ωl, η)−K(ω0, η)
, m 6= 0.

(22b)

In eqns (22) the function cn is the Jacobi’s cosine amplitude function, E is the Jacobi’s epsilon function,
and dn is the Jacobi’s elliptic function, defined as

cn(u, ϕ) = cos (am(u, ϕ)), E (σ, ϕ) = E(am(σ, ϕ), ϕ), dn(u, ϕ) =
√

1− ϕ2 sn2(u, ϕ), (23)

and E is the Jacobi’s incomplete elliptic integral of the second kind

E (σ, ϕ) =

∫ σ

0

√
1− ϕ2 sin2 φ dφ. (24)

Imposing specific boundary conditions at the strip’s ends, the elastica joining the two constrained
ends can be found. The two isoperimetric constraints, x(l) = d and y(l) = 0, are enforced through the
following nonlinear system: {

d cos β = Am(l)l,

d sin β = Bm(l)l,
(25)

where, from equation (22), the quantities Am(l) and Bm(l) are given by

Am(l) =


1− 2

ξ2

(
1− E(χl, ξ)− E(χ0, ξ)

K(χl, ξ)−K(χ0, ξ)

)
,

2
E(ωl, η)− E(ω0, η)

K(ωl, η)−K(ω0, η)
− 1,

Bm(l) =


2

ξ2

√
1− ξ2 sin2 χl −

√
1− ξ2 sin2 χ0

K(χl, ξ)−K(χ0, ξ)
, m = 0,

2η (cosωl − cosω0)

K(ωl, η)−K(ω0, η)
, m 6= 0.

(26)
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The nonlinearity of the system (25) leads to possible non-uniqueness for the equilibrium configura-
tion, providing interesting conditions of bifurcation or snap instability during a quasi-static variation
of the boundary conditions as shown in the next Section.

As a final remark, equations (8)-(22) can be directly exploited to attack various boundary value
problems by properly imposing the nonlinear system to be solved, so that the present formulation can
also be considered to treat structural systems as an alternative to previously adopted procedures [36].

3.1 Stability of the elastica with constrained ends

Extending previously presented procedures [3],[7], [19], the stability of the achieved equilibrium config-
urations is judged with reference to small and compatible perturbations in the rotation field θ(s). In
particular, the stability is connected to the sign of the second variation of the total potential energy
(4), which referring to a weak perturbation θvar(s) can be written as

δ2V = −B
∫ l

0

[
θ′′var(s) + γ2 θvar(s) cos

(
θ(s)− β

)]
θvar(s) ds, (27)

so that an equilibrium configuration is stable when δ2V is positive definite (δ2V > 0 for every compatible
perturbation θvar(s)), while unstable when δ2V is indefinite or negative definite. Differently, in the case
that δ2V is semi-positive definite, higher order variations have to be considered (as described at the
end of this subsection) to judge the stability.

The compatibility restricts the perturbation field θvar(s) to have null values at the two ends, θvar(0) =
θvar(l) = 0, and to satisfy the following isoperimetric constraints (derived from the first variation of the
displacement boundary conditions x(l) = d and y(l) = 0, eqns (3)1 and (2))∫ l

0

θvar(s) sin θ(s) ds = 0,

∫ l

0

θvar(s) cos θ(s) ds = 0. (28)

Introducing the eigenfunction φn(s), subject to the boundary conditions

φn(0) = 0, φn(l) = 0,

∫ l

0

φn(s) sin θ(s) ds = 0,

∫ l

0

φn(s) cos θ(s) ds = 0, (29)

the positive definiteness of the functional δ2V , eqn (27), can be analyzed investigating the non-trivial
solutions of the following Sturm-Liouville problem:

φ′′n(s) + ζnw(s)φn(s) = C3 sin θ(s) + C4 cos θ(s), (30)

where the weight function is defined as

w(s) = γ2 cos
(
θ(s)− β

)
, (31)

and where the resultant inclination β, the normalized load γ and the rotation field θ(s) are known at
this stage from the definition of equilibrium configuration, while C3 and C4 are Lagrangian multipliers,
and ζn is the eigenvalue related to the eigenfunction φn(s). The following property holds:

ζn

∫ l

0

w(s)φn(s)φm(s) ds =

 ζn

∫ l

0

w(s)φ2
n(s) ds =

∫ l

0

φ′n(s)2 ds > 0, ifn = m

0 ifn 6= m,

(32)
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so that any compatible perturbation θvar(s) can be expressed as the Fourier series expansion of the
eigenfunctions φn(s)

θvar(s) =
∞∑
n=1

cnφn(s), (33)

where cn are the Fourier coefficients. Considering the properties (32) and the Fourier series expansion
for the perturbation field θvar(s), the second variation of the total potential energy (27) can be rewritten
as

δ2V =
∞∑
n=1

(
1− 1

ζn

)
c2n

∫ l

0

φ′n(s)2 ds, (34)

so that the equilibrium configuration is stable whenever ζn /∈ [0, 1] for every n, unstable when ζn ∈
(0, 1) for at least one value of n, and to be investigated through higher-order variations otherwise.
It follows that the condition of smallest eigenvalue greater than one implies that the configuration is
stable. Following Kuznetsov and Levyakov [21], the eigenfunction φn(s) can be represented as the linear

combination of the functions ϕ
(j)
n (s) (j = 1, ..., 4)

φn(s) =
4∑
j=1

Cjϕ
(j)
n (s), (35)

where the four functions are defined respectively as the solutions of the following four second order
differential problems

ϕ(1)
n

′′
(s) + ζnw(s)ϕ(1)

n (s) = 0,

ϕ(1)
n (0) = 1,

ϕ(1)
n

′
(0) = 0,


ϕ(2)
n

′′
(s) + ζnw(s)ϕ(2)

n (s) = 0,

ϕ(2)
n (0) = 0,

ϕ(2)
n

′
(0) = 1,

ϕ(3)
n

′′
(s) + ζnw(s)ϕ(3)

n (s) = sin θ(s),

ϕ(3)
n (0) = 0,

ϕ(3)
n

′
(0) = 0,


ϕ(4)
n

′′
+ ζnw(s)ϕ(4)

n (s) = cos θ(s),

ϕ(4)
n (0) = 0,

ϕ(4)
n

′
(0) = 0.

(36)

Considering the boundary condition (29)1, and the boundary conditions defined for each function

ϕ
(j)
n (s) (j = 1, ..., 4) in the differential problems (36), it follows that C1 = 0 so that the evaluation of

the function ϕ
(1)
n (s) can be disregarded. Imposing the remaining boundary conditions (29)2, (29)3, and

(29)4, the homogenous linear problem A(ζn)C = 0 is obtained for the vector C = {C2, C3, C4}, where

A(ζn) =


ϕ
(2)
n (l) ϕ

(3)
n (l) ϕ

(4)
n (l)∫ l

0

ϕ(2)
n (s) cos θ(s) ds

∫ l

0

ϕ(3)
n (s) cos θ(s) ds

∫ l

0

ϕ(4)
n (s) cos θ(s) ds∫ l

0

ϕ(2)
n (s) sin θ(s) ds

∫ l

0

ϕ(3)
n (s) sin θ(s) ds

∫ l

0

ϕ(4)
n (s) sin θ(s) ds

 , (37)

so that the eigenvalues ζn can be finally evaluated from the condition of vanishing determinant,
det A(ζn) = 0. From the operational point of view, with reference to every equilibrium rotation field
θ(s), the differential system (36) can be numerically solved as a function of ζn ∈ [0, 1] and the configu-
ration judged stable when det A(ζn) 6= 0 for ζn ∈ [0, 1], while unstable if this condition is not fulfilled.
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It is noted that in the limiting case when det A(ζn) vanishes only for ζn = 1, the related equilibrium
configuration is unstable if the third variation is non-null for the related eigenfunction φn(s), while if
this variation vanishes the analysis should consider higher-order variations. In particular, if the next
even variation is positive (negative) for θvar(s) = φn(s), the configuration is stable (unstable). Other-
wise, if the next even variation is null for θvar(s) = φn(s), the next odd variation should be considered
and if not null the configuration is unstable. In general, the k-th variation of the total potential energy
can be written for k ≥ 3 as

δkV =


(−1)

k+1
2 γ2B

∫ l

0

[θvar(s)]
k sin

(
θ(s)− β

)
ds, k odd,

(−1)
k
2 γ2B

∫ l

0

[θvar(s)]
k cos

(
θ(s)− β

)
ds, k even.

(38)

4 Number of stable solutions, bifurcations and universal snap conditions

For any triad of parameters {d, θ0, θl}, the nonlinear system (25) can be solved to numerically evaluate
the existing pairs of parameters (β and ξ for m = 0, or β and η for m 6= 0) associated with the
possible stable equilibrium configurations for such boundary conditions. Reference is made solely to
configurations with m ∈ [0, 2] because those with m > 2 are numerically found to be always unstable
(although a general analytical proof seems awkward, [22]). The number of stable solutions has been
observed to vary from 1 to 3 within the kinematical parameter space defined by {d, θ0, θl}.3 Furthermore,
being the developed model referred to the case of strips with loads applied only at the two ends,
configurations of self-intersecting elastica are found through the presented numerical evaluation for a
set of boundary conditions, while the respective self-contact configurations between different parts of
the strip are excluded (see Section 4.4 for further details).

A typical map in the plane [θ0, θl] representing the number of stable solutions is shown in Fig. 2
(left) for a distance d = 0.6l, where the existence of one, two, and three stable configurations for a
specific triad {d, θ0, θl} is identified by the regions I, II, and III, respectively. The figure shows that the
regions within this plane are characterized by a periodicity vector [2π, 2π] related to the shifting in the
solution of 2jπ (j ∈ Z) when the imposed rotations are modified by 2jπ at both ends,{

θ∗(0) = θ(0) + 2jπ,

θ∗(l) = θ(l) + 2jπ,
⇔ θ∗(s) = θ(s) + 2jπ, ∀j ∈ Z, (39)

With reference to such periodicity property, it is instrumental to introduce the angles θA and θS,
respectively defined as the antisymmetric and symmetric parts of the imposed rotations,

θA =
θ0 + θl

2
, θS =

θl − θ0
2

, (40)

which are reported in Fig. 2 (left) through grey axes inclined at an angle π/4 with respect to the axes
θ0 − θl. Considering the shifting of the rotation field expressed by eqn (39) it follows that

θ∗A = θA + 2jπ, θ∗S = θS, ∀j ∈ Z, (41)

3It is remarked that the end rotations θ0 and θl have no restriction on their value, being unlimited their difference

θl − θ0 =
∫ l
0
θ′(s)ds. If the angles θ0 and θl were referred to the end inclinations (instead of being referred to the

end rotations, as in the present analysis), their respective sets would be limited due to angular periodicity, for example
to θ0 ∈ (−π, π) and θl ∈ (−π, π), and more than 3 stable configurations could be found as solution to the same end
inclinations problem [1].
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Figure 2: (Left) Number of stable equilibrium configurations for a distance d = 0.6l for varying θ0 and θl (or equivalently,
θA and θS). Regions with different colors and marked with I, II, and III identify triads {d, θ0, θl} for which one, two, and
three stable configurations exist, respectively. (Right, upper part) Pairs of stable equilibrium configurations possible for
the boundary conditions a, b, c, and d highlighting the mirroring properties when the modulus of the antisymmetric and
the symmetric parts of the rotations is kept constant. (Right, bottom part) The three stable equilibrium configurations
possible for the boundary conditions e.

highlighting the mentioned periodicity property of the equilibrium configurations which is given only
in the θA variable within the θA − θS reference system.4

Another interesting property is now pointed out. A change in sign for each of the two parameters θA
and θS is related to a specific ‘mirror’ in the boundary conditions for the parameters θ0 and θl, namely

Conf. a:

{
θaA = θA

θaS = θS

}
⇔

{
θa0 = θ0

θal = θl

}
, Conf. b:

{
θbA = −θA

θbS = θS

}
⇔

{
θb0 = −θl

θbl = −θ0

}
,

Conf. c:

{
θcA = −θA

θcS = −θS

}
⇔

{
θc0 = −θ0

θcl = −θl

}
, Conf. d:

{
θdA = θA

θdS = −θS

}
⇔

{
θd0 = θl

θdl = θ0

}
.

(42)

It follows that the respective deformed configurations of the cases b, c and d can be obtained through
the mirroring of the reference deformed configurations of the case a, Fig. 2 (right, upper part). The
mirroring properties can be summarized as:

• a change in sign for the parameter θA defines a configuration obtained as the mirroring with
respect to the line orthogonal to that joining the two ends and passing at its center;

4The periodicity for the solution in the rotation field for the elastica is similar to that observed in the kinematic
description of the physical pendulum, which is insensitive to an increase of an angle 2jπ (j ∈ Z).
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• a change in sign for the parameter θS defines a configuration obtained as two mirrorings, one with
respect to the line joining the two ends and the other with respect to the orthogonal line at its
mid point;

• a change in sign for both the parameters θA and θS defines a configuration obtained as the
mirroring with respect to the line joining the two ends.

These mirroring properties allow a simplified representation of the number of stable solutions within
the plane |θA| − |θS|, so that only the first quadrant is drawn and restricted to the condition |θA| ≤ π
because of the periodicity vector. In this way, the map of solutions number reported in Fig. 2 (left)
for a distance d = 0.6l is represented in Fig. 3 (right), where the inflection points number m related to
each stable solution is specified as listed in the subscript within parentheses. As a further example, the
representation of the number of stable solutions is also reported for a distance d = 0.3l in Fig. 3 (left).
Lines crossing and lines bounding the regions I, II, and III are reported in Fig. 3, in particular:

• the grey thin lines crossing the regions define the transition for which the number m of inflection
points along the strip changes, while the number of stable solutions is kept constant. These lines
can be defined imposing null curvature at one of the two ends (so that the strip has one hinged
end while the other is a rotating clamp);

• the thick lines bounding the regions define the transition for which the number of stable solutions
changes, so that they represent the critical condition of snap for one of the stable solutions. The
lines are reported as thick orange and thick brown in order to identify the two possible different
snap-back conditions (described in the following).

Because of the simple reference (clamped-hinged) structure to which are related, the grey lines can
be found from straightforward computations. Indeed, for a given distance d, the relation θS = θS(θA)
tracing the grey line can be computed from the nonlinear system (25) by imposing the condition of null
moment at one of the two strip’s ends, for example considering ω0 = (−1)pπ/2 if the hinge is located
at the coordinate s = 0. Differently, drawing the orange and brown thick lines is a more complex task
because they are related to the issue of stability loss for one of the possible equilibrium configurations.
Such analysis requires a further representation for the solution domains which is now introduced.

4.1 Equilibrium paths for a fixed distance d

In the attempt to simplify the visualization of the solution domains for a fixed distance d, reference
is made to the quasi-static evolutions of the rotations θA and θS starting from a stable configuration
for null angles at both clamps, θ0 = θl = 0 so that θA = θS = 0 (namely, a shortening of the distance
between the two clamps is imposed starting from the straight configuration). Only two stable solutions
can be obtained for these ‘initial’ boundary conditions, both characterized by the same number of
inflection points (m = 2) but differing in the value of p, and representative of the two possible buckled
configurations for a strip clamped at both ends and subject to a shortening l− d. Considering this, the
solution maps of Fig. 2 and of Fig. 3 (right) for a fixed distance d = 0.6l can be split in two separate
representations, each of these restricted to a specific value of p (identifying the positiveness, p = 0,
or negativeness, p = 1, of the curvature at the coordinate s = 0) as shown in Fig. 4 and therefore
related to one of the two initial configurations possible for θA = θS = 0. In this way, the generic
evolution for the boundary conditions can be represented with a continuous curve in the plane θA− θS
starting from its origin. Despite the non-linearity of the problem, each point along this curve is related
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(left) and d = 0.6l (right).

to a (when existing) unique deformed configuration whenever snap conditions or bifurcation points
are not encountered along the considered evolution. Consequently, such a representation provides a
fundamental tool in the definition of the solution domains and of the snap-back conditions for every
possible evolution of the imposed rotations at a fixed distance d, showing the critical and bifurcation
conditions depending on the value of p.

The moment-rotation response curve associated with each evolution of the boundary conditions
reveals the presence of snap-back instabilities (related to the annihilation of the second variation,
δ2V = 0) when a point with vertical tangent in the response curve is reached and no smooth stable5

evolutions of the deformed configuration can be obtained for a further monotonic variation in the
rotation. The set of boundary conditions {d, θA, θS} corresponding to the vertical tangency in the
moment-rotation response are identified by means of a standard bisection algorithm applied to the
analyzed equilibrium path.

The above described analysis provides the domains and lines as reported in Fig. 4, where also
specific equilibrium configurations are displayed for some critical pairs of boundary conditions. The
solution domains are reported with different colors, identifying different properties as follows:

• blue/green/red regions – the unique stable equilibrium configuration corresponding to the consid-
ered p has zero, one, and two inflection points along the strip for the blue, green, and red regions,
respectively;

• white regions – no stable equilibrium configuration is possible for that specific value of p. However,
for the mirroring property, the stable equilibrium configuration exists for the other value of p;

• grey regions – the equilibrium configuration related to a pair θA, θS belonging to this region can
be represented by that related to the pair within the colored or white regions (namely, outside the
grey regions) considering the shifting of the solution as highlighted by eqn (41). The corresponding

5In general, the equilibrium path smoothly continues after the snap point with an opposite change of the rotation
value. However, this path is not considered here due to its unstable nature.
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dual values can be evaluated from θA and θS as

θA = θA − 2π

⌊
1

2
+
θA
2π

⌋
, θS = θS, (43)

where the symbol b·c represents the floor function, which evaluates the greatest integer that is
less than or equal to the relevant argument. Note that, from eqn (43) follows that θA ∈ [−π, π]
for every θA.
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Figure 4: Domains of unique stable solutions within the plane θA − θS for p = 0 (left) and p = 1 (right) for evolutions
with a fixed distance d = 0.6l and starting from the boundary conditions θA = θS = 0. Regions with the same color
identify stable equilibrium configurations having the same numberm of inflection points along the strip (note the mirroring
property of the domains for varying p). See the main text for the definition of the domain and line colors.

Similarly, the lines separating the different domains are drawn with various styles, representing
the type of transition in the equilibrium configuration occurring when the evolution of the boundary
conditions passes from one region to another.

With reference to any continuous evolution in the set of applied rotations {θA(τ), θS(τ)} from an
initial (τ = τi) to a final instant (τ = τf ), where τ is a time-like parameter, the following cases are
possible:

• if a dashed grey line is crossed, the equilibrium configuration smoothly varies changing the number
m of the inflection points, while the value of p is kept constant;

• if a continuous grey line is crossed, the equilibrium configuration smoothly varies changing both
the number m of the inflection points and the value of p, in particular p(τf ) = 1−p(τi). Therefore,
the final configuration is related to a solution map dual to that of the initial value of p(τi). As it
can be noted in Fig. 4, the continuous grey lines are present only at the borders between one of
the colored regions with a white region;

• if a dashdotted grey line is crossed, the equilibrium configuration smoothly varies keeping fixed
both the number m of the inflection points and the value of p. As it can be noted in Fig. 4, these
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lines appears only at θS = ±π and are connected to the shifting property of the solution, eqn
(41), so that, considering eqn (43), the final equilibrium configuration has to be referred to the
values {θA(τf )− 2πb1/2 + θA(τf )/(2π)c , θS(τf )};

• if a thick orange line is crossed, a critical configuration of snap-back type 1 instability is en-
countered so that a small variation in the boundary conditions realizes a large variation in the
equilibrium configuration. Therefore, the final equilibrium configuration is achieved by means
of a dynamic motion from the initial one. The initial and final configurations are described by
a different value of p, namely, p(τf ) = 1 − p(τi). From the present analysis it is also observed
that before and after the snap-back type 1 mechanism there are always two inflection points,
m(τf ) = m(τi) = 2;

• if a thick brown line is crossed, the critical condition of snap-back type 2 instability is encountered.
However, differently from crossing the thick orange line, in this case the boundary conditions of the
final configuration {θA(τf )/(2π), θS(τf )} lie within the grey region, so that the interpretation of
the considered solution map requires a further effort. Indeed, from the solution shifting principle,
the final configuration should be referred to the values {θA(τf )− 2πb1/2 + θA(τf )/(2π)c, θS(τf )}.
If these values correspond to a white region for the solution map with p(τi), the final configuration
is the one associated with the same values but related to the dual map for which p(τf ) = 1−p(τi);

• if no line is crossed, the initial and final configurations have the same values for p and m, and
therefore are represented within the same solution map corresponding to p(τi) = p(τf ).

It is worth to remark that crossing a colored thick line does not always provide a snap-back in-
stability. Indeed, this phenomenon is strictly related to the equilibrium configuration taken by the
structural system before crossing this condition. More specifically, referring to the θA− θS plane and a
fixed distance d, the snap mechanism is realized whenever the scalar product between the incremental
vector connecting the initial to the final boundary conditions and the normal (defined as the derivative
of the tangent) to the snap-back curve is non-negative.

Moreover, the snap-back curves display the typical shape of catastrophic cusps [4], revealing how the
magnitude of the so-called control parameter at a critical point decreases with respect to the perfect case
(maximum critical rotation at the cusp) due to the presence of increasing imperfections. In particular,
the role of such control parameter is played by the symmetric part of the rotation θS for snap-back
curves of type 1 and by the antisymmetric part θA for snap-back curves of type 2, while the role of the
imperfection is respectively played by θA and θS.

It is finally noted that all the regions and lines reported in Fig. 4 satisfy the mirroring properties
shown in eqns (42) and highlighted in Fig. 2 (right). Therefore, when p is switched from 0 to 1, the
domains of the case p = 1 (Fig. 4, right) can be obtained from those of the case p = 0 (Fig. 4, left)
through a mirroring with respect to the axis θS for the configurations with m = 1 and through a double
mirroring (with respect to both axes, θA and θS) for those with m = 0 and m = 2.

Similarly to Fig. 4, the domains are reported in Figs. 5 and 6 for different values of the end’s
distance, respectively for d = {0.05, 0.1, 0.2, 0.3} l and d = {0.4, 0.5, 0.7, 0.8} l. The maps are reported
only for p = 0, since those are related to the case p = 1 through mirroring.

A last comment is made about the two limit cases of maximum and minimum distance between the
ends, respectively d ' l and d = 0:

• In the former case (d ' l), although the analysis should be improved by considering stretching
energy, the present model (based on the inextensibility assumption) shows that the curve of snap-
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Figure 5: Domains of unique stable solutions within the plane θA − θS for evolutions starting from the boundary
conditions θA = θS = 0 and related to p = 0 (the domains related to p = 1 can be obtained through the respective
mirroring properties highlighted in the text and visible in Fig. 4). The domains are reported for different values of fixed
distance between the two ends, d = {0.05, 0.1, 0.2, 0.3} l. See the main text for the definition of the domain and line
colors.

back type 1 reduces to the point with coordinates θA = θS = 0 while the curve of snap-back type
2 reduces to the four line segments defined by |θS| = 2π − |θA| with |θA| ∈ [π, 2π];

• Differently, in the case when the two ends have the same position (d = 0), the mechanical system
shows the independence of the parameter θA, because in the case of null distance the angle θA
merely expresses a rigid rotation of the entire structure and the elastic energy stored within the
structure is only a function of the angle θS. In this case, the curve of snap-back type 1 becomes
the segment lines given by θS = 0 and |θA| . 0.726π while the curve of snap-back type 2 becomes
the segment lines given by θS = 0 and |θA| ∈ [1, 1.726]π. It is also worth to mention that in
the very special case of θS = 0, an infinite set of stable and equivalent (namely, corresponding
to the same elastic energy) solutions exists for the strip with fixed end rotations, provided by a
‘8-shaped’ configuration [20, 31].
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Figure 6: As for Fig. 5, but for higher values of fixed distance between the two ends, d = {0.4, 0.5, 0.7, 0.8} l. See the
caption of Fig. 4 and the main text for the definition of the domain colors and the other lines. Being d > 0.369l, the
yellow points (associated with bifurcations) are absent at the cusps of the snap-back curves type 2 (see Sect. 4.3).

4.2 Equilibrium paths for a variable distance d

The families of snap curves reported for fixed values of d in Figs. 4, 5 and 6 suggest the existence of
snap surfaces within the space d/l− θA− θS. These snap surfaces can be disclosed by interpolating the
snap curves within specific planes. The snap curves evaluated for twenty planes, taken for computa-
tional convenience at constant θA and θS for snap types 1 and 2, respectively, have been exploited to
generate the snap-back surfaces by means of the function Interpolation in Mathematica (v.10). Due
to mirroring properties, the snap surfaces are entirely described through their representations within
one octant of the space d/l− θA− θS, displayed in Fig. 7 for snap-back type 1 (left) and type 2 (right)
surfaces. Such snap surfaces represent a fundamental tool in the investigation about snap mechanisms
and the definition of the correspondent critical boundary conditions during a quasi-static evolution of
strips with controlled ends. With the purpose to facilitate the use of this tool, the numerically evaluated
dataset of about 2000 critical conditions for snap type 1 is made available as Supplementary material.
Before exploiting the concept of universal snap surfaces in some applicative examples presented in Sect.
5, it is worth to discuss the possibility of bifurcations during a loading process, the amount of elastic
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energy release, and the conditions of self-intersecting elastica.

| !|θ

| "|θ

d/l

| "|θ

| !|θ

d/l

Figure 7: Surfaces defining the critical boundary conditions in the {|θA|, |θS |, d/l} space for which snap-back type 1
(left) and type 2 (right) occurs. The surfaces are built from the related snap-back curves, respectively orange and brown,
obtained for different values of d and reported in Figs. 4, 5, and 6.

4.3 Bifurcations at snap

The boundary conditions corresponding to (almost all) the intersections of the orange and brown snap-
back curves with the lines θA = {−π, 0, π} and with the line θS = 0 (corresponding to the cusps and
end points of the snap curves) are marked with colored spots in Figs. 4, 5, and 6. For the boundary
conditions corresponding to these points, the semi-positive definiteness of the second variation δ2V
is complemented by the annihilation of the third variation δ3V for the related eigenfunction (while
δ3V is different from zero for the other points along the snap curve) and a positive value is found
for the corresponding fourth variation δ4V . These special points (some of them also observed in [23])
are marked as red and yellow spots, respectively corresponding to pitchfork (with no snapping) and
unstable-symmetric bifurcation points (with snapping), and defined as follows.

Red spots. These points are located at the intersections of the orange thick curve with the condition
θS = 0 and of the brown thick curve with the condition θA = ±π. Snap never occurs when the snap
curve is crossed through these points; however when the snap curve is crossed from outside to inside, a
bifurcation may be encountered. More specifically, a pitchfork bifurcation is found when crossing the
orange (brown) curve from outside to inside at the red point with a null increment in the angle θS (θA),
namely a purely antisymmetric (symmetric) variation in the boundary conditions at the critical point.
These bifurcative behaviours are displayed in Fig. 8 and Fig. 9, where specific loading processes are
considered for a fixed distance d = 0.4l and crossing the red spots located at the edges of the snap-back
type 1 and type 2 curves.

The antisymmetric case, θS = 0, at increasing θA is considered in Fig. 8, where in the first line
the loading path is reported on the left and the moment M0 at the left clamp as a function of the
angle parameter θA on the right. The evolution of the deformed shape is displayed in the second,
third, and fourth lines and is reported for the six specific stages of the boundary conditions, highlighted
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Figure 8: Evolution of the left clamp moment M0 for increasing θA (upper line, right column), showing the existence
of pitchfork bifurcation points at c and g along the antisymmetric loading path θS = 0 at fixed distance d = 0.4l (upper
line, left column). The evolutions of the stable equilibrium configurations along the considered path are shown in the
second, third and fourth line.

both in the solution maps and moment-angle response through the alphabetic letters a, b, c, d, e, f ,
g, h, and i. During the evolution, the bifurcation occurs when the stage c is attained, namely, when
the snap curve is crossed from outside to inside, and corresponds to the condition of null moment at
both clamps. Just after the stage c is passed, the structure may equally evolve through two different
loading paths, namely, the structure may equally reach configuration d1 or d2. Once that one of these
two branches is undertaken, the evolution continues on that specific branch. However, at increasing
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Figure 9: As for Fig. 8, but for varying θS with θA = −π and d = 0.4l. As the configuration c is reached, a pitchfork
bifurcation occurs at the limit configuration (purple, m = 2) followed by symmetry-breaking in both branches, as shown
by the two stable configurations (green and pink) at stages d, e, and f .

the rotation parameter, both branches finally join together when the stage g is reached and, after this
stage (from g to i), the structure follows the only possible evolution. It is also important to highlight
that the configurations c and g are stable solutions having m = 1 internal inflection point and null
curvature at both ends (similar configurations are also present for all the bifurcation conditions, red
spots, on snap-back curve type 1 for every distance d, and for some bifurcation conditions, yellow spots,
on snap-back curve type 2 as discussed below).

A similar behaviour is also displayed in Fig. 9 with reference to θA = −π and decreasing θS.
Differently from Fig. 8, here the bifurcation occurs for a symmetric configuration and is associated
with a non-null moment value at both clamps. The pitchfork bifurcation at the point c reveals a
symmetry-breaking behaviour. In fact, the initial symmetric configuration becomes unstable after the
bifurcation point is reached, and the system may only follow two other stable paths described by the
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mirrored configurations. A similar behaviour has also been detected in the case of a ring pinched by two
radial loads [21], while the existence of a central unstable and symmetric solution has also been reported
by [6] and [21], where the symmetric configuration for the double-clamped rod with null rotations at
its ends is proven to snap towards the S-shaped configurations e1 or e2.

Yellow spots. These points are located at the intersections of the orange thick curve with the con-
dition θA = 0 and, only for d ≤ 0.369 l, of the brown thick curve with the condition θS = 0.6 Snap
occurs when the snap curve is crossed through these points from inside to outside and a bifurcation
may be even encountered. More specifically, an unstable-symmetric bifurcation is found at the snap
when crossing the orange (brown) curve from inside to outside at the yellow point with a null in-
crement in the angle θA (θS), namely a purely symmetric (antisymmetric) variation in the boundary
conditions at the critical point. The moment rotation response at increasing value of θS crossing the
snap type 1 curve is displayed in Fig. 10 for a fixed distance d = 0.4l and at very small fixed values of
θA = {0, 10−4, 10−3, 10−2}. An example of unstable-symmetric behaviour can be envisaged in the purely
symmetric case, θA = 0, where the symmetric response (for which the moments at the two clamps have
the same value, M0 = Ml) intersects the two other unstable paths. Differently, if a small constant value
is assumed for the antisymmetric part of rotation θA, the moment rotation response reaches a critical
condition of snap-back, for which the tangent of the response curve is vertical.
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Figure 10: Moment-rotation responses at increasing modulus of θS (crossing the snap type 1 curve) for a fixed distance
d = 0.4l and θA =

{
0, 10−4, 10−3, 10−2

}
. The presence of an unstable-symmetric bifurcation point (yellow spot) is

reported for symmetric loading condition, θA = 0. (Left) Responses in terms of normalized symmetric and antisymmetric
parts of the moment at the clamps, (M0+Ml)/2 and (M0−Ml)/2. (Right) Responses in terms of the normalized moment at
the right clamp, Ml, and (inset) three deformed configurations before snapping and corresponding to θS = {0, 0.9, 1.621}
and to θA = 0.

6It is remarked that the yellow points given by the intersection of the brown snap-back curve with the axis θS = 0
exist only for d ≤ 0.369 l and correspond to stable configurations with m = 1 inflection point and null curvature at both
ends. This behaviour is not observed for d > 0.369 l, where the third variation δ3V is not null and snap mechanism occurs
without any bifurcation as soon as the snap curve is crossed at any other point. It follows that no yellow point appears
in Fig. 6 for snap-back curves of type 2, being the considered distances d > 0.369 l.
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4.4 Self-intersecting elastica

The snap surfaces reported in Fig. 7 have been obtained assuming that the strip is only loaded
at its ends. It follows that the obtained critical conditions hold whenever the development of self-
contact points along the strip is excluded.7 This circumstance is trivially realized when the deformed
configuration is not self-intersecting, but also when the self-intersection is made possible by the out-of
plane geometry. The latter case is realized with strips shaped along the out-of-plane direction in such a
way that during the planar intersection two external halves of the strip contain a central strip, namely
a Y-shaped strip with specific out-of-plane variations [7, 21].

In order to detect when self-intersection does occur before snapping and, equivalently, when it does
not, it is of practical interest to define the boundary conditions for which a contact point is first realized.
This information can be consequently used to determine which portions of snap surfaces are attained
only after an evolution involving the self-intersection. The boundary conditions of first self-contact can
be found imposing that for one and only one pair of curvilinear coordinates s(1) and s(2) have the same
position,

x
(
s(1)
)

= x
(
s(2)
)
, y

(
s(1)
)

= y
(
s(2)
)
,

{
s(1), s(2)

}
∈ [0, l]. (44)

Evaluating the conditions of first self-contact, it is observed that:

• the conditions of snap-back type 1 (orange surface, Fig. 7 left) are always reached without
developing a self-intersecting elastica if d & l/4. For d . l/4, the snap-back most likely occurs
after developing a self-intersecting configuration, however the exact limit distance for which the
self-intersection is realized depends on the values of θA and θS, Fig. 11;

• the conditions of snap-back type 2 (brown surface, Fig. 7 right) are always reached after developing
a self-intersecting elastica.

It is finally observed that self-contact may occur during snapping although the strip has no self-
contact at the critical snap condition. Indeed, the dynamic transition from the pre and post snap
configurations may evolve requiring self-intersecting shapes, which could be not geometrically feasible
even for Y-shaped strips.

4.5 Energy release at snapping

The design of snapping devices can be optimized through the maximization of the energy release during
mechanisms. In a first approximation, the energy release ∆E can be estimated as the difference in the
energy amounts E , eqn (5), between the stages before and after the snap-back and evaluated under the
quasi-static assumption through eqn (20).

Restricting attention only to snap-back type 1, the elastic energy difference ∆E is reported in Fig.
12. Two nondimensionalizations are considered, division by B/l (Fig. 12, upper part) and division by
the elastic energy before snapping E0 (Fig. 12, lower part). On the left part of Fig. 12, the elastic
energy difference ∆E is shown for different distances d/l = { 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
} for varying the angle for which the snap-back type 1 occurs. The angle measure is expressed as
the modulus of θsb1A , the antisymmetric critical angle at the snap-back, normalized through division by
θsb1,bifA , the antisymmetric angle at bifurcation for snap-back (the red spots on the θA axis in Fig. 4,
5 and 6 and for which no snap occurs, θsb1,bifA (d) = maxθS

{
θsb1A (θS, d)

}
= θsb1A (θS = 0, d)). For all the

7Analysis of elasticae with self-contact points requires the resolution of two or more elasticae subject only to end
loadings [26].
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Figure 11: (Left) Surface portion for the boundary conditions of first self-contact within the space d/l − |θA| − |θS |,
which are contained within the snap-back type 1 surface (represented only through its contour levels). (Right) The
most restrictive condition of self-contact, corresponding to the case θA = 0, is reported as a blue curve within the plane
d/l− |θS | showing that self-intersecting elasticae may realize before attaining snap-back type 1 (orange curve) only when
d . l/4. An example of self-intersecting elastica is also reported for |θS | = π/4.

reported cases it can be concluded that the maximum elastic energy release for a fixed distance d is
always attained under symmetric conditions, θsb1A = 0. For such symmetric condition, the elastic energy
difference ∆E is shown on the right part of Fig. 12 as a function of the distance d between the strips’
ends. The plot on the upper right part shows that the energy release ∆E has a maximum value of about
76.67B/l at d ≈ 0.189l and has null values for both the limit-cases d = l and d = 0. The plot on the
lower right part shows that the relative energy release ∆E/E0 monotonically increases with the increase
of the distance d and attains its maximum ratio of about 0.889 in the limit condition of d = l. With
reference to this last case, it is also worth to highlight that the relative energy release is approximately
constant for d > l/4, more specifically it varies from ∆E/E0(d = l/4) = 0.884 to ∆E/E0(d→ l) = 0.889.

5 Validation of the analytical predictions

The universal critical surface for snap type 1 is validated through comparison with experimental obser-
vations and results from numerical simulations. The available experimental data [5],[27], restricted to
symmetric boundary conditions (θA = 0), are complemented by testing a physical model developed to
cover non-symmetric paths (θA 6= 0). Finally, the influence of dynamical effects on the system response
is assessed through numerical simulation of evolutive problems performed in ABAQUS. Reliability of
the quasi-static predictions obtained through the universal surface is shown in the case of evolutions
with moderate velocity.

5.1 Experimental results

A physical model (Fig. 13, left) is developed in order to experimentally investigate the snap conditions
of the structural system under non-symmetric paths. Two forks in steel are exploited to control in
practice the clamps, constraining the position and the rotation at both ends of an elastic strip. The
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Figure 12: Energy release ∆E estimated as the difference in the energy amounts E , eqn (5), between the stages before
and after the snap-back of type 1, normalized by B/l (upper part) and by the elastic energy before snapping E0 (lower
part). The energy release ∆E is shown in the left column for different distances d/l for varying the modulus of the

angle for which the snap-back type 1 occurs, θsb1A , normalized through division by θsb1,bifA = maxθS
{
θsb1A (θS , d)

}
. With

reference to symmetric condition, θA = 0, the energy release is shown in the right column as a function of the normalized
distance d/l.

strip is obtained from cutting a transparency film by Folex and has cross section 12 mm width times 0.1
mm height and length l = 200 mm. Restricting the kinematics of the two forks, specific non-symmetric
paths are covered with the developed device. More specifically, the fork constraining the left end has a
fixed position while the fork constraining the right end imposes null inclination, θl = 0, and may move
along the x-axis. From these boundary conditions it follows that the evolution expressed in terms of
the three main kinematic quantities is given by

d = d(τ), θ0 = θ0(τ), θl = 0, (45)

so that the non-symmetric paths characterized by θA(τ) = −θS(τ) = θ0(τ)/2 can be investigated.
Varying only one kinematical parameter, the two following types of experiments are performed:
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Exp. A – keeping a fixed distance d(τ) = d between the two forks, the rotation at the left end θ0(τ)
changes in time;

Exp. B – keeping a fixed rotation at the left end θ0(τ) = θ0, the distance d(τ) between the two forks
changes in time.

During each experiment, the rotation θ0(τ) or the distance d(τ) is slowly varied by hand. The variation
in the kinematical parameter is stopped as soon as the strip snaps and the respective critical value is
measured for the rotation θ0,cr(d) in Exp. A or for the distance dcr(θ0) in Exp. B with the goniometer
or the ruler mounted on the device, respectively. The critical conditions experimentally collected
from Exp. A and Exp. B are respectively reported as dots and crosses within the plane θ0 − d/l in
Fig. 13 (right) together with the theoretical critical curve, namely the intersection of the universal
snap surface type 1 (Fig. 7, left) with the plane θA = −θS. These experimental measures are also

θ₀

d/l

Exp. A

Exp. B

Figure 13: (Left) The developed physical model used to experimentally detect the critical snap configurations of the
considered system, realized as a strip (obtained from cutting a transparency film) constrained at its ends by two forks.
(Right) Critical snap conditions θ0− d/l from Exp. A (dots) and Exp. B (crosses) confirming the theoretical predictions
(curve) from the present model.

reported together with those measured in the case of purely symmetric rotation θA = 0 by Beharic
et al. [5] (for d/l w {0.833, 0.862, 0.893, 0.926, 0.962, 0.980, 0.990}) and by Plaut and Virgin [27] (for
d/l w {0.413, 0.637, 0.827, 0.955}) in Fig. 14, where the universal snap surface type 1 and its intersection
with planes at constant values of d/l, |θA|, and |θS| are represented, fully confirming the reliability of
the predictions from the present model.

5.2 Numerical simulations and dynamic effects

In order to evaluate the possible influence of inertia on the snapping conditions of the system, the
presented quasi-static predictions are finally compared with the response obtained from the numerical
simulations performed in ABAQUS (v.6.13) for two different evolutive problems.
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Figure 14: Intersections of the universal snap surface type 1 with planes at constant values of d/l (upper part), |θA|
(lower part, left), and |θS | (lower part, right). Critical conditions assessed from Exp. A and Exp. B (performed on
the developed physical model, Fig. 13, left) confirm the theoretical predictions reported for fixed d and for fixed |θA|,
respectively. Experimental results performed for the purely symmetric case (θA = 0) by other authors [5], [27] are also
reported (lower part, right), further confirming the excellent agreement between the experiments and the theoretical
predictions from the present model.

Sim. I – Clamps rotating cyclically and with opposite velocity. Considering a fixed distance d, the
kinematics for the strip’s ends is described by

d = d, θ0(τ) = −ϑ(τ) + θA, θl(τ) = ϑ(τ) + θA, (46)

or equivalently, through eqn (40), in terms of symmetric and antisymmetric parts of the angles
as

θS(τ) = ϑ(τ), θA = θA, (47)

from which it is evident that the function ϑ(τ) represents the evolution of the symmetric part
of the two angles in the time-like parameter τ while θA represents a constant anti-symmetric
angle during the evolution. Referring to the physical time t = Tτ , where T =

√
ρl4/B is
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the characteristic time for the system having a linear mass density ρ, results from Sim. I are
reported for a fixed antisymmetric rotation θA = 0.16π and two fixed distances d/l = 0.4
(Fig. 15, upper part, left) and d/l = 0.8 (Fig. 15, lower part, left). In both cases, the cyclic
evolution in the boundary conditions is realized through the succession of the increase and
decrease in the symmetric rotation within the range θS ∈ [−π/2, π/2] keeping a constant
modulus in the velocity, ∣∣∣ϑ̇(τ = t/T )

∣∣∣ =
Ω

T
, (48)

where a superimposed dot corresponds to the derivative in the physical time t and Ω is the
dimensionless (angular) velocity. The cyclic path prescribed in Sim. I theoretically encounters
two snap conditions given by the same modulus of θS.

Sim. II – Monotonic variation in the clamps distance. Constant rotations θ0 and θl are assumed for
the two ends, so that the kinematical evolution of the strip’s ends is given by

d = d(τ), θ0 = θ0, θl = θl, (49)

where the function d(τ) defines a monotonic increase or decrease in the distance between
the two clamps. Results from Sim. II are reported for fixed rotations θ0 and θl such that
θS = π/8 (Fig. 15, upper part, right) and θS = π/4 (Fig. 15, lower part, right), and in both
cases θA = 0.16π. In both cases, the monotonic variation in the distance d is considered from
the value d(τ = 0)/l = 0.336 with a constant velocity,∣∣∣ḋ(τ = t/T )

∣∣∣ =
∆ l

T
, (50)

where ∆ is the dimensionless velocity. During both the monotonic shortening and the mono-
tonic lengthening in the clamps distance prescribed in Sim. II, a snap mechanism is theoret-
ically predicted for each evolution.

A linear viscous Rayleigh damping acting on the mechanical system, modeled as 100 planar beam
elements with linear elastic constitutive behaviour, is considered in all the simulations through the mass-
proportional and the stiffness-proportional damping coefficients respectively as Ad = 8.25×10−3/T and
Bd = 6.06 × 10−3T . The inherent extensibility of the strip modeled in ABAQUS has been considered
through the axial stiffness EA = 106 × B/l2. All the presented analyses are performed using the
nonlinear geometry option and started from the undeformed straight configuration with null rotations,
d = l and θ0 = θl = 0. All the simulations share the first two static steps, while are different in the last
dynamic step as follows:

Step 1 – Static: An end’s distance d(0) is imposed and a transversal load is applied in order to achieve
the buckled configuration;

Step 2 – Static: the transversal load is removed and the clamp rotations are imposed in order to set
the initial values of θA and θS(0);

Step 3 – Dynamic implicit: inertial effects are analyzed during the evolution in the boundary conditions
at velocity with constant modulus from t = 0 to t = tf as
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Sim. I – initial and final configurations have θS(0) = ϑ(0) = ϑ(tf ) = 0. Introducing the
reference time Tr = πT/(2Ω), the duration of the evolution is given by tf = 4Tr.
The rotation velocity is assumed ϑ̇ = Ω/T for t ∈ [0, Tr] and t ∈ [3Tr, 4Tr], while is
assumed ϑ̇ = −Ω/T as for t ∈ [Tr, 3Tr], so that the velocity changes sign whenever
the modulus of rotation reaches |θS| = π/2;

Sim. II – the initial and final configurations have the ends distance given by d(0) and d(tf ).
The transition between these two conditions occurs with constant velocity and has a
duration tf = Tr, where Tr = 0.637T/∆. The constant velocity is taken positive or
negative in order to investigate the snap mechanism during lengthening or shortening.

The results of the simulations of the two evolutive problems are reported in Fig. 15 and compared
with the respective quasi-static behaviour predictions using the inextensible elastica (and highlighting
the snap angles and snap distances, defined by the snap curve θA = 0.16π in Fig.14 right, lower part).
In particular, results for the Sim. I are reported in Fig. 15 (left) in terms of the moment (at the right
end) at cyclically varying (symmetric) rotation θS, while those for the second evolutive problem are
reported in Fig. 15 (right) in terms of the horizontal reaction (at the right end) for monotonic increase
and decrease in the clamps distance. The respective numerical results are reported for three values
of dimensionless velocities, Ω = {0.01, 0.1, 1} and ∆ = {0.001, 0.01, 0.1}, showing that the quasi-
static model accurately describes the mechanical behaviour of the structural system until approaching
the snap-back conditions, identified as the intersection of the loading path with presented snap-back
surface type 1. Due to the presence of dissipative effects, the post-snap quasi-static path is reached
after a transient time from the snap for which the dynamical effects are decayed. More specifically,
non-negligible dynamic effects lead to a delay in the occurrence of snap with respect to the quasi-
static prediction for high velocities. Oppositely, the dynamic response becomes almost completely
superimposed (except for a small transient) to the quasi-static curve in the case of a velocity Ω = 0.01
and ∆ = 0.001, values defining the velocity orders below which the present model, although obtained
within the quasi-static framework, fully represents a reliable model.

6 Conclusions

Within a quasi-static framework, the number of stable equilibrium configurations has been disclosed
for an elastic strip for varying the parameters controlling the kinematics of its ends. This analysis
has led to the definition of universal snap surfaces, collecting the critical values of ends distance and
rotations for which the strip shows a snap mechanism. Available experimental data and experimental
results from testing a developed physical model fully validate the presented theoretical universal snap
surface. Finally, finite element simulations show the influence of inertia on the snapping mechanisms
and, in the case when the controlled ends move moderately, confirm the theoretical predictions based
on the present quasi-static model. These results are complemented by the dimensionless analysis of
elastic energy release at snapping, towards the optimal design of impulsive motion. In addition to the
relevant contribution to the stability of structures, the present results may find application in a wide
range of technological fields, ranging from energy harvesting to jumping robots.
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(2014-2019).
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