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Abstract With a loose reference to problems of penetration in biomechanics (for
instance, a nanoparticle penetrating through a cell’s membrane or a cell sucked with
a pipette), the role of configurational forces is investigated during the process in
which a compliant intruder is inserted into an elastic structure. For insertion into
a rigid constraint, a configurational force proportional to the square of the strain
needed to deform the body, which is penetrating, is found. This force has a more
complex structure when the compliance of the constraint is kept into account, but in
all cases, it tends to expel the penetrating body.

1 Introduction

Biomechanics is a fast developing multidisciplinary science aimed at challenging the
secrets of nature. The biomechanics of soft tissues, including successfully modeling
of muscles (Stålhand et al. [19]), blood vessels (Holzapfel et al. [14, 15]), brain
(Franceschini et al. [13]; Mihai et al. [16]), and vascular tissues (Pandolfi and
Holzapfel [17]), is recently oriented to a deeper understanding of the mechanics of
the cell (Discher et al. [11]; Boal [5]; Deseri and Zurlo [8]; Terzi et al. [20]; Deseri
et al. [9]; Daddi-Moussa-Ider et al. [7]), a field strongly related to several timely
problems, including the COVID-19 emergency.

Membrane penetration of nano- or microparticles is a common feature in cell
mechanics, important from several points of view, including drug delivery and viral
entry. In particular, viral entry into a cell during the early stage of infectionmay occur
in different forms. In the case of penetration, the cell’s membrane is punctured after
attachment of the virus, which in this way injects its contents inside the cytoplasm.
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Fig. 1 Schematics of the penetration process: (a) trapping, (b) puncturing, (c) opening, (d) penetra-
tion, and (e) end of the process. The penetrating particle and the cell are assumed to be deformable
in a two-dimensional formulation, where friction, dissipation, and interparticle non-mechanical
interactions are neglected.

Cells may be subject to large deformations, a situation occurring, for instance,
when a cell is drawn up a pipette, as is the case of a human red blood cell (Discher
et al. [10]). This process involves a competition between forces tending to inject and
eject the cell. Similarly, but at a smaller scale, the influenza A virus can be trapped
into a nanotube with an internal diameter of 400 nm (Yuge et al. [21]). Membrane
penetration and pipette suction are just two examples of problems involving the
insertion of a compliant body inside a soft (the membrane) or a rigid (the pipette)
structure.Many other problems of this kind can be listed in biomechanics: endoscopy,
insertion of a catheter into a blood vessel or into the urinary tract, or injection of a
needle for biopsy or for puncturing tissues (Roxhed et al. [18]).

In the present article, the penetration of a compliant body into an elastic structure
(such as a cell’s membrane) or into a rigid constraint (as when a cell is drawn up
a pipette) is analyzed from a purely mechanical perspective, under simple assump-
tions. These include restriction to the two-dimensional formulation (a gross, but
common, approximation (Daddi-Moussa-Ider et al. [7])) and absence of: (i) friction,
(ii) dissipative forces, and (iii) interparticle non-mechanical interactions, such as, for
instance, magnetic attraction. The simple mechanical process of penetration schema-
tized in Fig. 1 is addressed, with the specific purpose to explore and present the role
of configurational forces, actions that develop when an elastic system can change its
configuration through a release of elastic energy. These forces have been introduced
by Eshelby [12] to describe the mechanics of defects and only recently explored in
elastic structures subject to bending (Bigoni et al. [4]) and torsion (Bigoni et al. [3]).
Configurational forces in structures lead to unexpected effects, such as possibility of
self-encapsulation (Bosi et al. [6]) and expulsion during a penetration process ([2])
due to bending flexibility of inextensible rods.

2 Penetration and Configurational Forces

A simple model is introduced, which may capture essential features of the ‘punctur-
ing’ and ‘penetrating’ stages of the intrusion process, shown in Fig. 1. Besides its
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application to mechanobiology, the model is formulated to introduce the role of the
configurational force in the processes of insertion of an elastic body into another.

A deformable elastic layer is considered of initial height h0, out-of-plane width
b0, and length for the moment left unspecified. This layer has to be inserted between
two rigid planar and frictionless constraints, placed at a distance h̄ ≤ h0 along the
x2-axis when the two linear elastic springs of stiffness k are unloaded, see Fig. 2(a).
These two rigid plates are prescribed to remain parallel to the x1 − x3 plane.

The spring stiffness k simply models the elastic stiffness of the structure in which
the intruder has to penetrate. For instance, when the structure is a thin elastic ring
(as sketched in Fig. 1) of radius R and bending stiffness E J, the spring stiffness
becomes k = 2E J/(3πR3). The elastic layer is partially inserted (of an amount
l > 0) between the two frictionless constraints so that a deformed configuration
such as that illustrated in Fig. 2(b) is realized, where the height of the inserted layer
is h ∈

[
h̄, h0

]
. Although near the edge of the constraint exit, the stress/strain state

is highly disuniform, the unloaded configuration is reached at a sufficient distance
far from the constraint’s exit, while a state of uniaxial compression is approached
inside the rigid plates (where the width of the layer becomes b ≥ b0). Therefore, the
edges of the constraint induce a strong disturbance, but the stress/strain state tends to
become uniform far from this point, when the elastic layer is sufficiently long. Since
the contact between the layer and the constraint is smooth, one would be tempted to
conclude that no horizontal forces are applied to the elastic body along the x1-axis.
This too facile conclusion is missing the forces which develop at the corners of the
constraint, representing the ‘microscopic’ counterpart of the configurational force
concept. In particular, the configurational force can be understood as follows. The
total potential energyV of the deformed system represented in Fig. 2 is coincident
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Fig. 2 An elastic layer is inserted between two rigid, flat, and frictionless plates (remaining parallel
to the x1 − x3 plane), each held by a linear spring of elastic stiffness k. The distance between
the two rigid plates at rest is h̄, smaller than the height h0 of the elastic layer (a prism of initial
cross-section h0 × b0) in its unstressed configuration. In the deformed configuration, the prism
height is h ∈

[
h̄, h0

]
, the width is b ≥ b0, and the insertion length is l.
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with the elastic energy E, which is given by the sum of that stored in the springs
and in the layer. This energy has to depend on the configurational parameter l, i.e.
the amount of layer inside the constraint. If l decreases, the energyV(l) = E(l) will
decrease too, until becoming null when the layer loses contact with the rigid plates
because outside (l ≤ 0). Eshelby [12] defined the configurational force P acting on
the elastic system as the negative of the partial derivative of the total potential energy
V(l) at equilibriumwith respect to the configurational parameter. In the present case,
the configurational force reduces to

P = −
dE(l)
dl

, (1)

where the ‘−’ sign arises from the fact that on increasing l, the layer moves in the
negative direction of the x1-axis. Therefore, a configurational force emerges, which
pushes the layer outside the constraint and can be viewed from a ‘microscopic’ point
of view as the tangential reaction at the frictionless sliding constraint, provided as
the resultant of the actions realized at the constraints corners.

The elastic energies stored in the layer and in the springs can be evaluated
in an approximate way as follows. The strain-energy density function W for an
incompressible Mooney-Rivlin material is (Bigoni [1])

W(λ1, λ2, λ3) =
µ1
2

(
λ2

1 + λ
2
2 + λ

2
3 − 3

)
−
µ2
2

(
1
λ2

1
+

1
λ2

2
+

1
λ2

3
− 3

)
, (2)

where µ1 and µ2 are material constants, while λ1, λ2, and λ3 are the principal
stretches, the latter subject to the incompressibility constraint

λ1λ2λ3 = 1. (3)

The moduli µ1 and µ2 are subject to the restrictions

µ1 ≥ 0, µ2 ≤ 0, (4)

and values representative for the behavior of rubber at room temperature are µ1 =
3 bar and µ2 = −0.3 bar.

Consider a parallelepiped of initial height h0 and transverse dimensions l0 and
b0, compressed parallel to the edge h0 with a uniaxial state of stress, reducing the
height to h and enlarging the other two dimensions to l and b. The stretches are

λ1 =
l
l0
, λ2 =

h
h0
, λ3 =

b
b0
, (5)

which, due to loading symmetry (λ1 = λ3) and material incompressibility (eq. (3)),
are constrained by

λ1 =
l
l0
= λ3 =

b
b0
=

√
h0
h
. (6)
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Therefore, the elastic energy stored in the uniformly deformed parallelepiped corre-
sponds to

l0b0h0 W = l

√
h
h0

b0h0

[
µ1
2

(
h2

h2
0
+ 2

h0
h
− 3

)
−
µ2
2

(
h2

0
h2 + 2

h
h0
− 3

)]
, (7)

where the dependency on the parameter l, crucial in the following calculations, has
been evidenced.

When the stretch λ2 = h/h0 is close to 1, the energy (eq. (7)) can be approximated
by

l0b0h0 W =
3
2
(µ1 − µ2) l b0 h0ε

2, (8)

where ε is the infinitesimal strain along the x2-axis

ε =
h
h0
− 1, (9)

and for small strain, the elastic energy (eq. (7)) reduces for µ1 = µ and µ2 = 0 to the
strain energy of an isotropic and incompressible linear elastic solid.

The energy, as given in eq. (7), provides a simple approximation to that stored
in the whole deformed elastic layer. The contribution of the highly inhomogeneous
zone near the edge of the constraint is completely neglected, but this approximation
becomes reasonable when the parts of the layer inside the constraint and outside are
sufficiently long. In this way, the variation of the stored energy when a part of the
layer is expelled from the constraint corresponds with a good approximation to the
final segment of the layer inside the constraint, which is subject to a stress/strain
state approximately uniform and corresponding to uniaxial stress.

2.1 Penetration of a Rigid Body

If the penetrated body in which the elastic intruder is inserted is rigid, k → ∞, the
height h = h̄ is fixed, and no energy is stored within the springs. In these conditions
and for the above considerations, the configurational force P can be easily obtained
through differentiation of eq. (7) with respect to the parameter l, i.e.

P
µ1b0h0

= −
1
2

√
h
h0

[
h2

h2
0
+ 2

h0
h
− 3 −

µ2
µ1

(
h2

0
h2 + 2

h
h0
− 3

)]
. (10)

Using the conditions stated in eq. (4), it can be seen from eq. (10) that the configu-
rational force is negative (P < 0), and therefore, it tends to expel the layer from the
constraint (in other words, to move it in the positive direction of the x1-axis).

Equation (10) is a complex function of the elastic energy via the stretch λ2 = h/h0
and shows the independence of the length l for the configurational force P. When
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the strain ε is small, the configurational force P can be approximated as a quadratic
expression of the infinitesimal strain ε , i.e.

P
µ1b0h0

= −
3
2

(
1 −

µ2
µ1

)
ε2. (11)

2.2 Role of Penetrated Body’s Elasticity

In this section, the effect of the elasticity of the structure penetrated by the intruding
layer is accounted for by considering each rigid plate suspended by a linear elastic
spring of stiffness k, as illustrated in Fig. 2. The total elastic energy E, consisting of
the energies stored in the two springs of stiffness k and the elastic layer, is

E

µ1b0h0
=

kh0
4µ1b0

(
h
h0
−

h̄
h0

)2

+
l
2

√
h
h0

[
h2

h2
0
+ 2

h0
h
− 3 −

µ2
µ1

(
h2

0
h2 + 2

h
h0
− 3

)]
.

(12)
In this case, the height h is not imposed, as in eq. (10), but is an unknown, which
depends on the relative stiffness between the springs and the elastic layer. To proceed
further, the small strain assumption is introduced, together with µ1 = µ and µ2 = 0.
Under these restrictions, the configurational force can be easily calculated as follows.
The total elastic energy E (eq. (12)) becomes a function of the (small) strain ε in the
layer and reads

E(ε, l)
µb0h0

=
kh0

4µb0

(
1 + ε −

h̄
h0

)2

+
3
2

lε2. (13)

The stationarity of the total energy E(ε, l), as introduced in eq. (13), with varying
the strain ε in the layer gives the strain ε∗ at equilibrium for a given length l, i.e.

ε∗(l) = −
1 −

h̄
h0

1 +
6µb0l
kh0

(14)

(a negative quantity because of h̄/h0 < 1). Hence, the total elastic energy (eq. (13))
evaluated at ε∗ is

E(ε∗(l), l)
µb0h0

=
kh0

4µb0

(
1 −

h̄
h0

)2

1 +
kh0

6µb0l

. (15)

Using eq. (1), the configurational force P reads
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Fig. 3 Configurational force P, made dimensionless through division by µb0h0, as a function of
µb0l/(kh0) for three values of the ratio h̄/h0 = {0.94, 0.96, 0.98}.

P
µb0h0

= −
3
2

©«
1 −

h̄
h0

1 +
6µb0l
kh0

ª®®®¬
2

(16)

and is reported in Fig. 3 as a function of µb0l/(kh0), for three values of the ratio
h̄/h0, chosen close to one. At vanishing µb0l/(kh0), a finite limit is attained for the
force P, i.e.

lim
µb0 l
kh0
→0

P
µb0h0

= −
3
2

(
1 −

h̄
h0

)2

, (17)

which corresponds to the value obtained under the approximation that the penetrated
body is rigid (see Eq. (11)), by identifying the distance h̄ between the rigid plates at
rest with h.

3 Conclusion

Penetration of one body into another is a common process in biomechanics. It has
been shown in the present note that configurational forces may play an important
role in these processes. The configurational forces can be calculated by considering
the stored elastic energy and represent the counterpart of the microscopic actions
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developing at themoving boundary points, present at the contact between the intruder
and the penetrated body.
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