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Abstract

The planar mechanics of an elastic rod constrained by a frictionless, flexible sliding sleeve is analyzed.
A variational approach is first applied to the equilibrium of an equivalent compound rod system with
variable length, leading to a nonlinear boundary value problem. The equilibrium equations determine the
deformation kinematics and, through a frictionless sliding condition governed by the Hamiltonian invariant,
specify the overlapping length, but they do not reveal interaction forces between the flexible rod and the
flexible sliding sleeve. To capture the interaction in detail, the system is modeled as two sub-rods, and
both variational and micromechanical methods are employed independently, yielding identical closed-form
expressions for the internal forces and moments within the overlapping region. This analysis reveals the
presence of tangential concentrated interaction forces of repulsive nature at both ends of the overlapping
region. The investigation is complemented by the numerical solution of four case studies, illustrating the
broad mechanical behavior of the flexible, frictionless sleeve system. It is found that two different mechanisms
may define the maximum bearing capacity, associated with the reciprocal ejection of the two sub-rods: either
(i) a quasi-static disappearance of the overlap or (ii) a snap-through instability. The study also shows the
possible vanishing of the distributed interaction force, even in non-symmetric configurations. This research
establishes a novel theoretical framework for the mechanics of deployable systems and offers insights to
advance the design and analysis of structures in fields such as aerospace, robotics, and civil and mechanical
engineering.

Keywords: planar elastica; variable-length structures; configurational mechanics; moving-boundary
problems; rod-to-rod contact.

1. Introduction

Highly deployable structures are functional systems designed for advanced applications that require fast
assembly and disassembly. These structures stand out for their ease of transportation, as their disassembled
form occupies significantly less volume compared to their operational dimensions (Pellegrino, 2001; Miura
and Pellegrino, 2020). Traditionally, deployable structures have primarily addressed temporary construction
needs, such as portable bridges, emergency shelters, mobile healthcare units, and space exploration. In recent
years, they have also emerged as a vital concept in the development of innovative actuation mechanisms. In
addition to the well-established categories of tensegrity (Micheletti and Podio-Guidugli, 2022) and origami
(Misseroni et al., 2024) structures, another significant group of deployable structures based on sliding mech-
anisms is gaining recognition nowadays. To date, this group of structural systems has found applications in
oil well drilling (Downton, 2007; Wicks et al., 2008; Fang et al., 2013; Denoël and Detournay, 2011), packing
(Napoli and Turzi, 2015; Napoli and Goriely, 2017; Lombardo et al., 2018), robotics (Cicconofri and DeSi-
mone, 2015; Gilbert et al., 2016; Renda et al., 2021; Alkayas et al., 2023; Alfalahi et al., 2020; Boyer et al.,
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2022; Tong et al., 2025), and surgery (Duriez et al., 2006; Piskarev et al., 2024; Straathof et al., 2024; Liu
and Chen, 2013b,a; Mao et al., 2024; Tummers et al., 2024). These systems can dramatically change their
effective size or operational capabilities through relative sliding motions among their components or along
external constraints. Consequently, the modeling of these structural systems involves contact mechanics and
variable domains.

State of the art. Even within an elastic framework, the treatment of structural problems involving contact
with obstacles can be quite challenging, particularly when the obstacle is deformable. Unilateral contact
is typically addressed using a variational approach under an inequality constraint since the elastic beam
may detach from the obstacle. In the case of an elastic beam constrained by a frictionless sliding sleeve,
the problem simplifies as the contact constraint becomes an equality, although defined along an unknown
contact region.

In the last decade, a research effort has been dedicated to investigating the mechanics of rods constrained
by frictionless sliding sleeves that are rigid, namely highly stiff with respect to the constrained flexible
element. It has been shown that the possible variation in the overlapping length introduces an unexpected
non-zero tangential reaction at the entrance of the frictionless sleeve, associated with the curvature jump
localized at that point (Bigoni et al., 2015). Such a force is nonlinear and has an outward direction, and
has been exploited over the years to design mechanisms for: (i.) actuation for torsional (Bigoni et al.,
2014b), serpentine (Dal Corso et al., 2017), and soft robotics locomotion (Cazzolli and Dal Corso, 2024);
(ii.) buckling (Liakou and Detournay, 2018); (iii.) trivial path restabilization (Bigoni et al., 2014a; Bosi
et al., 2016); (iv.) blistering (Goldberg and O’Reilly, 2022; Wang and Detournay, 2022); and (v.) self-tuning
resonance (Koutsogiannakis et al., 2023; Migliaccio et al., 2025).

This non-zero tangential reaction finds a strong connection with configurational forces (Eshelby, 1951,
1956) and also inspired a Newtonian interpretation of the latter concept in fracture mechanics (Ballarini
and Royer-Carfagni, 2016). With regard to such a connection, it is worth to highlight that the concept
of configurational force (Gurtin, 1999; O’Reilly, 2017; Podio-Guidugli, 2001; Hanna et al., 2018; Singh and
Hanna, 2021) is different from that of Newtonian force, therefore these two types of forces can not be
interchanged under a generic setting. Nevertheless, in special cases, the configurational force of a system
may also take a value coincident with that of the tangential (Newtonian) reaction at the corner of a sliding
sleeve exit, as in the frictionless contact of hyperelastic solids (Dal Corso et al., 2024).

Various Arbitrary Lagrangian-Eulerian (ALE) schemes and finite element formulations have recently
been proposed to serve as efficient numerical tools for addressing mechanical problems involving frictionless
sliding sleeve constraints (Han, 2023; Han and Bauchau, 2023; Vetyukov, 2024; Koutsogiannakis et al., 2025);
see also the review paper (Scheidl and Vetyukov, 2023) for a general discussion of approaches towards solving
problems with moving boundaries in structural mechanics.

Article contribution. We extend the planar analysis of elastic rods constrained by frictionless sliding sleeves
to cases where both the constraint and constrained elements exhibit flexibility. The system under consid-
eration can then be regarded as two inextensible and unshearable elastic sub-rods in reciprocal, frictionless
bilateral contact along an overlapping region. Consequently, since each sub-rod is slender and modeled as a
one-dimensional continuum along its center-line axis, both assume an abstractly coincident role, regardless
of whether they physically represent the flexible sliding sleeve or the inserted flexible rod. By modeling the
frictionless sliding sleeve system as a compound rod with variable length, we derive its equilibrium config-
uration in terms of kinematics of deformation and length of overlapping region by applying a variational
approach. This results into a non-linear boundary value problem with an additional frictionless sliding
condition. Despite its convenience, however, this approach does not provide a complete picture of the me-
chanics of the system. Indeed, as in the case of a rigid sleeve, discontinuities in internal forces and moments
within each sub-rod arise at the end points of the contact (overlapping) region, which we henceforth refer
to as transition points. These jumps correspond to concentrated forces and moments at these locations,
representing the interaction between the two sub-rods. Similar to the rigid sleeve case, the concentrated
interaction forces have a nonzero axial (namely, tangential) component, now governed by the bending stiff-
ness of both sub-rods. Moreover, since both sub-rods are deformable, their interaction extends throughout
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the entire overlapping region, found to manifest exclusively as a normal contact force distribution. Through
variational and micromechanical approaches (where in the latter we analyze the contact mechanics at the
transition point in the presence of a small clearance), we derive explicit closed-form expressions to evaluate
both the concentrated and distributed interaction forces, and we detail how the axial and shear components
of the internal forces, as well as the internal moments, are split in each of the two sub-rods in the overlapping
region.

Moreover, in the absence of distributed external loadings (such as gravity), we demonstrate that the
Hamiltonian remains constant for each of the two sub-rods comprising the flexible frictionless sliding sleeve
system. Consequently, no discontinuity in the Hamiltonian occurs at the transition point, despite the
presence of concentrated interaction forces and moments, nor does it vary along the overlapping region.
Considering that the Hamiltonian definition can be extended to the case of gravity (O’Reilly, 2015, 2017)
and of other conservative loading (Neukirch and Bertails-Descoubes, 2025), we conjecture that the major
results of the present work would hold in these cases.

Article outline. Without loss of generality, we address the specific problem of a simply supported flexible
frictionless sliding sleeve, where the two supports remain at a fixed distance. The external loading condition
consists of two concentrated moments applied at the supports. In Section 2, we solve this system under the
linearized geometry approximation, considering both symmetric and generic configurations. In Section 3,
we briefly recall the geometrically nonlinear framework of planar elastica and introduce key notations and
fundamental quantities. Section 4 presents a variational approach in which the system is divided into three
distinct regions, with the overlapping region treated as a compound structure consisting of two beams.
In Section 5, by deriving the interaction concentrated and distributed forces, we examine how internal
forces and moments are distributed between the two beams within the compound system. In Section 6, we
present a simple numerical code, based on the derived theoretical solution, to compute equilibrium states
and interaction forces. This solver is applied to four distinct case studies, illustrating the broad mechanical
behavior of the flexible, frictionless sleeve system. Among the key findings, the analysis identifies two possible
mechanisms for achieving maximum bearing capacity: either through the quasi-static disappearance of the
overlapping length or the emergence of snap-through instability. Additionally, the study highlights the
potential for complete annihilation of the distributed normal interaction force, even in a non-symmetric
configuration. Finally, conclusions are drawn in Section 7.

Article significance. Building on the previous knowledge of variable-length systems constrained by rigid
sliding sleeves, the present results extend the theoretical framework to structures where both the constraint
and constrained elements are flexible. We enhance mechanical modeling approaches for deployable systems
and provide insight into the distribution of internal forces and moments. The present comprehensive
understanding of the interaction between flexible components can drive the optimization of mechanical
performance, the enhancement of structural adaptability, and the overall improvement of system efficiency.
The developed framework allows significant potential advancements in the design and analysis of deployable
structures with aerospace, robotics, and mechanical and civil engineering applications.

2. A preliminary analysis in the geometrically linear setup

2.1. The symmetric case

We begin the investigation with a simple illustrative problem, which allows to introduce the basic notions
and to demonstrate the effects, studied later in a more general setting. Consider a compound beam loaded
by two moments at the simply supported ends, Fig. 1.

The structure comprises two sub-rods, the left one being a flexible sliding sleeve for the right one, as the
latter is partially inside in the former. In the overlapping region, that is between the transition points A and
B, sliding is realized without friction. The left and right supports are respectively at points O and C. For the
simplicity of analytic treatment, in this Section we assume geometric linearity, and begin the analysis with
a symmetric setup: both sub-rods possess the same mechanical properties, namely same bending stiffness
a (we use this notation instead of the classical EI used in Strength of Materials texts) and same length L.
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Figure 1: Geometrically linear bending problem for a simply supported compound beam, loaded by a pair of moments T0.
(Top) The undeformed configuration (T0 = 0). (Bottom) As T0 is increased while the points O and C are kept fixed, relative
frictionless sliding is occurring in the overlapping region AB and a reaction force Rx builds up at the supported ends.

Two external bending moments T0 act on the rods at the supports in such a way that the bending direction
is upwards. The length of the overlapping region ℓ is a configurational parameter, constrained within the
set ℓ ∈ (0, L), which is defined by the fixed distance D between the two supports. Horizontal reaction forces
Rx act on the structure by the supports at the ends. In the absence of friction, these forces are balanced
by the horizontal component F of the interaction force between the sub-rods at the transition points, which
we aim to determine.

We consider a compound rod with piecewise constant bending stiffness with the purpose of computing
its total potential energy as a function of ℓ. Placing the origin of the material coordinate s at the left end
in the point O, we denote by y(s) the deflection and by θ(s) = y′(s) the angle of rotation of particles within
three domains:

• left segment 0 < s < sA, bending stiffness a, θ = θ1;

• overlapping segment sA < s < sB , bending stiffness 2a, θ = θ̊;

• right segment sB < s < sC , bending stiffness a, θ = θ2;

with
sA = L− ℓ, sB = L, sC = 2L− ℓ. (1)

Here, and in the following, we use a small ring as in θ̊ to refer to a function defined in the overlapping region.
Because θ(s) is continuous, the three functions must match in the transition points:

θ1(sA) = θ̊(sA), θ̊(sB) = θ2(sB). (2)

The bending moment M = −T0 (according to the sign convention) is constant as there are no vertical forces
in the supports and the deflections are small1. The constitutive relations read

a θ′1 = M, 2 a θ̊′ = M, a θ′2 = M. (3)

Using the symmetry of the problem, it is easy to integrate the equations piecewise and to obtain the strain
energy and the potential of external loads. Moreover, the statical determinacy of the problem makes it even
easier to compute the total complementary strain energy, whose density is known in all three segments. This
equals the strain energy E itself because of the linearity of the problem and reads

E =
M2

2a
sA +

M2

4a
(sB − sA) +

M2

2a
(sC − sB), (4)

1See Fig. 8 below for the evolution of the deformation of the structure with increasing external moment T0 in the geometrically
nonlinear case, when the horizontal reaction forces in the supports contribute to the bending moment distribution M(s).
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which, by considering the coordinate values given in Eq. (1), reduces to

E(ℓ) = M2

4a
(4L− 3ℓ). (5)

According to Clapeyron’s theorem, the work of external load W is twice the elastic energy, W = 2E , and
the total potential energy V = E −W reduces to

V(ℓ) = −E(ℓ) = M2

4a
(3ℓ− 4L). (6)

The energy decreases as the length of the overlapping region becomes smaller, which means the rod would
slide out of the sleeve given the freedom to do so, i.e. if one of the supports would be movable horizontally.
Here, the end-to-end distance OC is fixed to D(ℓ) = 2L−ℓ and the structure remains in equilibrium because
of the reaction force Rx, which would become an active force needed to prevent sliding if the right support
were movable. Considering the Lagrangian L

L(ℓ) = V(ℓ)−Rx D(ℓ), (7)

the equilibrium is obtained by writing the stationarity condition

∂L(ℓ)
∂ℓ

= 0 ⇒ Rx = −∂V(ℓ)
∂ℓ

, (8)

showing that (within a linear setting) the horizontal reaction Rx is an Eshelby-like force for the system.2

By performing such a computation, it follows that

Rx = −3M2

4a
, (9)

and therefore Rx has a negative value, realizing a compressive state in the flexible sleeve system. After
obtaining the Rx value, it is also possible to evaluate the horizontal component F of the interaction force
between the sub-rods at the transition points, see Fig. 1. Note that the forces at A and B are equal because of
the symmetry and the assumed identical mechanical properties of the sub-rods. The horizontal equilibrium
of each of them implies 2F = −Rx, and thus the horizontal interaction force results in

F =
3M2

8a
. (10)

This deviates from the known value M2/(2a), which holds in the case of a rigid sleeve (Bigoni et al.,
2015). This specific result Eq. (10) was easy to obtain owing to the symmetry and linearity of the problem.
Furthermore, we ignored small but potentially important horizontal components of the transverse contact
concentrated and distributed forces between the sub-rods, as their resultants vanish because of the symmetry
of the setup. In the following we demonstrate that, in a general nonsymmetric case, this higher-order effect
has to be accounted for to again arrive at Eq. (10), making computations more complicated. More advanced
argumentation featuring the small extensibility of the rods will need to be invoked to compute the tangential
contact force in the more general case of nonsymmetric large deformations with possible differences in the
rigidities of the sub-rods.

2The nomenclature Eshelby-like force has been first introduced in Bigoni et al. (2015) to highlight the strong connection of
Newtonian forces with configurational ones in variable-length systems. More specifically, the reaction Rx of the present simply
supported system with non-moving points O and C takes the value of the configurational force for the system, would the
constraint at the point C be released to allow motion along x. This is analogous to the coincidence of the configurational force
with the opposite of the tangential component of the concentrated reaction at the corner of a rigid flat punch in frictionless
contact with an hyperlastic solids (Dal Corso et al., 2024).
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2.2. The nonsymmetric case

We now consider the case where the structure of Fig. 1 is loaded with two different external torques Tl

and Tr, and the two sub-rods may have different bending stiffnesses a1 and a2. The end-to-end distance OC
is still fixed to D(ℓ) = 2L − ℓ and in the present geometrically linear setup, we have that the horizontal x
and vertical y positions at the arc length coordinate s are defined as

x(s) = s, y(s) =

∫ s

0

θ(σ) dσ, s ∈ [0, D]. (11)

The internal moment M is no longer uniform M(s, ℓ) = −Tl − Ry(ℓ)s, and the reaction force R now has
both horizontal Rx and vertical Ry components. The vertical component is obtained through a moment
balance Ry(ℓ) = (Tr − Tl)/D(ℓ), while the horizontal component is obtained by looking for the stationary
point of the Lagrangian L, which again provides the horizontal reaction Rx as a configurational force for
the system as expressed by Eq. (8). Using again Clapeyron’s theorem, we have W(ℓ) = 2E(ℓ) and hence
V(ℓ) = −E(ℓ), which finally yields

Rx =
∂E(ℓ)
∂ℓ

= −T 2
l

a1
ρ

(
a2
a1

,
Tr

Tl
,
ℓ

L

)
< 0. (12)

Here ρ > 0 is a dimensionless quantity, whose expression is reported in Appendix A, together with that of
the elastic energy E(ℓ). Eq. (12) generalizes to nonsymmetric flexible sleeve systems the result in Eq. (9)
obtained for symmetric ones, and confirms that the horizontal reaction Rx is always compressive.

Considering the global force balance of rod 2 (Fig. 2), we write the reaction force R = Rxex +Ryey as

Ry

Rx

−θB
θA

f[12]n(s)
N̊1Bn

N̊1Bt

B

M̊1B
N̊2An

AM̊2A

N̊2At

Figure 2: Free-body diagram of sub-rod 2. The normal distributed load f[12]n(s) can be neglected in the equilibrium of the
linearized case as providing higher-order contribution (see Sect. 5.2 for details, Eq. (89)).

the following sum of force contributions

Rx =

∼θ2︷ ︸︸ ︷
N̊2At −

∼θ2︷ ︸︸ ︷
N̊2AnθA︸ ︷︷ ︸

−FA[12]x

+

∼θ2︷ ︸︸ ︷
N̊1Bt −

∼θ2︷ ︸︸ ︷
N̊1BnθB︸ ︷︷ ︸

−FB[12]x

−

∼θ4︷ ︸︸ ︷
���������∫ L

L−ℓ

f[12]n(s)θ̊(s)ds,

Ry =

∼θ3︷ ︸︸ ︷
����N̊2AtθA +

∼θ︷ ︸︸ ︷
N̊2An︸ ︷︷ ︸

−FA[12]y

+

∼θ3︷ ︸︸ ︷
����N̊1BtθB +

∼θ︷ ︸︸ ︷
N̊1Bn︸ ︷︷ ︸

−FB[12]y

−

∼θ3︷ ︸︸ ︷
��������∫ L

L−ℓ

f[12]n(s)ds,

(13)

the first two terms being the force coming from sub-rod 1 at point A, the two subsequent terms being the
force coming from sub-rod 1 at point B, and the last term being the force coming from sub-rod 1 in the
overlapping region, see Eq. (93). As it will be explained in Section 5, these terms scale in different manners
with the global deflection of the structure and in the present small deflection limit, we see that only the
forces at the transition points A and B matter (the corresponding order is highlighted above the terms in
Eq. (13)).
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It is finally observed that in the symmetric case of Section 2.1 (a1 = a2 = a, Tr = Tl = T0), we find
Ry(ℓ) = 0, ρ = 3/4 and

Rx = −3T 2
0

4a
, N̊2At = N̊1Bt =

Rx

2
= −3T 2

0

8a
, N̊2An = N̊1Bn =

Ry

2
= 0 , θB = −θA , θ′B = θ′A, (14)

and therefore

FA[12]x = FB[12]x =
3T 2

0

8a
, FA[12]y = FB[12]y = 0. (15)

3. Nonlinear model for the planar mechanics of flexible, inextensible, and unshearable rods

The subsequent analysis of the sliding sleeve problem is based on the relations of the geometrically
nonlinear theory of rods under planar bending. In this section we consider the model of an inextensible,
unshearable rod at finite rotations. Following Antman (2004); Goss (2009); Bigoni (2012); Vetyukov (2014,
2012), we here refer to this problem as the planar elastica, define useful quantities, and recall equilibrium
equations and some properties of the equilibrium solutions.

3.1. Kinematics
We consider a rod that is straight in its undeformed state. In its deformed (current) planar configuration,

the rod axis is described by the position vector x(s) = x(s)ex + y(s)ey, as a function of the curvilinear
(arc-length) coordinate s, with ex and ey being the orthonormal Cartesian basis for the deformation plane
(Fig. 3, left). As the rod is inextensible, |dx| = ds, the tangent vector t(s) = x′(s) is given in term of the

ey

ex

x(s)

n(s
)

(s)

0

q
t(s

)

N
(s
)

N (s)
n(s

)

n

N (s)
t(s

)

t

M(s)

s

-N
(s
)

M(s)

s

s

f(s)

m(s)
f(s)

m(s)

Figure 3: In-plane kinematics and statics of an inextensible and unshearable rod. (Left) Global ex–ey and local t(s)–n(s)
orthonormal bases. The deformed configuration is uniquely described by the inclination θ(s) of the rod axis at the curvilinear
coordinate s with respect to ex. (Center and right) Internal moment M(s) and internal force vector N(s), together with its
components along the local orthonormal basis t(s)–n(s). External distributed force f(s) and moment m(s) are also shown.

(positive when counter-clockwise) inclination θ(s) of the rod axis with respect to ex, namely

t(s) = cos θ(s)ex + sin θ(s)ey. (16)

For Kirchhoff rods, the angle θ(s) is coincident with the rotation angle of an oriented particle from the
reference state due to the assumption of no shear deformability. By introducing with a prime the derivative
with respect to the relevant arc-length coordinate s, the derivative t′(s) of the tangent vector is given by

t′(s) = θ′(s) ∂θt = θ′(s)n(s). (17)

Here θ′(s) is the curvature and n(s) is the unit normal vector,

n(s) = − sin θ(s)ex + cos θ(s)ey, (18)

which is orthogonal to the tangent vector, t(s) ·n(s) = 0, and whose derivative satisfies n′(s) = −θ′(s) t(s).
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3.2. Statics

The internal force vector N(s) stands for the force between the two neighboring particles of the rod at
s. It is the force the particle at s+ exerts on the particle at s− (Fig. 3, center). It can be decomposed
along the absolute orthonormal basis ex–ey as N(s) = Nx(s) ex +Ny(s) ey and equivalently to the relative
one t(s)–n(s) as N(s) = Nt(s) t(s) + Nn(s)n(s), being Nx(s) and Ny(s) the Cartesian components and
Nt(s) = N(s) · t(s) and Nn(s) = N(s) · n(s) the internal axial (or tension) and shear force, respectively.
By introducing the internal bending moment M(s) (Fig. 3, center), the equilibrium condition under the
external distributed force f(s) and moment m(s) is provided by the local balance equations

N ′(s) + f(s) = 0, (19a)

M ′(s) + x′(s)×N(s) · ez +m(s) = 0, (19b)

where ez = ex × ey = t(s)×n(s). Due to the inextensibility assumption (x′ = t), the scalar triple product
property (t × N · ez = ez × t · N), and considering that ez × t = n, the identity x′(s) × N(s) · ez =
N(s) · n(s) = Nn(s) holds. By assuming a linear constitutive relation between the bending moment M(s)
and the curvature θ′(s) with a constant bending stiffness a,

M(s) = a θ′(s), (20)

the moment balance (19b) simplifies to

aθ′′(s) +Nn(s) +m(s) = 0. (21)

Now that the basic equations of the theory of Kirchhoff rods are formulated, we establish some further
relations, useful for the subsequent analysis. Considering that the derivatives of the internal axial Nt(s)
and shear Nn(s) forces are respectively given by N ′

t(s) = N ′(s) · t(s) + N(s) · t′(s) and N ′
n(s) = N ′(s) ·

n(s) + N(s) · n′(s), and decomposing the external distributed force f(s) into its normal and the tangent
components, f(s) = ft(s) t(s) + fn(s)n(s), the balance of forces (19a) can be rewritten as

N ′
t(s) = −ft(s) + θ′(s)Nn(s), N ′

n(s) = −fn(s)− θ′(s)Nt(s). (22)

3.3. Hamiltonian H(s) and its possible invariance

The product of the moment balance (21) with θ′(s) can be rewritten by considering Eq. (22)1 as(a
2
(θ′(s))

2
+Nt(s)

)′
+ ft(s) +m(s)θ′(s) = 0. (23)

By introducing the quantity H(s) defined as

H(s) =
a

2
(θ′(s))

2
+Nt(s), or equivalently H(s) =

M(s)
2

2a
+Nt(s), (24)

the integration of equation Eq. (23) over the finite interval with bounds sA and sB leads to

H(sB)−H(sA) = −
∫ sB

sA

[ft(s) +m(s)θ′(s)] ds. (25)

Equation (25) shows that the quantity H(s) is conserved

H(s) = H, (26)

whenever the integral condition
∫ sB
sA

[ft(s) +m(s)θ′(s)] ds = 0 holds for every pair of sA and sB , and

therefore when the tangential component ft(s) and the moment m(s) satisfy

ft(s) +m(s)θ′(s) = 0, (27)

including the case where both functions identically vanish, ft(s) = m(s) = 0. Under this circumstance, the
quantity H is called the Hamiltonian invariant (Dichmann et al., 1996; Kehrbaum and Maddocks, 1997;
Nizette and Goriely, 1999).
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Discontinuity due to concentrated forces. The case of a concentrated external force F 0 and moment M0

applied at the curvilinear coordinate s0 can be addressed by exploiting Eq. (25) under external distributed
force and moment respectively given by f(s) = F 0 δ(s − s0) and m(s) = M0 δ(s − s0) and the bounds as
sA = s−0 and sB = s+0 . This leads to the jump condition (O’Reilly, 2017)

JH(s0)K = −F0t −M0 ⟨θ′(s0)⟩ , (28)

where F0t is the axial component of the concentrated force F 0, and the symbols JH(s0)K and ⟨θ′(s0)⟩
respectively stand for the jump and mean value of the relevant argument at the coordinate s0,

JH(s0)K = H(s+0 )−H(s−0 ), ⟨θ′(s0)⟩ =
θ′(s−0 ) + θ′(s+0 )

2
. (29)

It is noted that the integral of the product of a Dirac δ-function with discontinuous θ′(s) at s0 does not
automatically imply the form with the mean value. However, the jump condition (28) is obtained by
integrating the moment balance (21) in a small vicinity around point s0, provided the concentrated moment
is replaced by a distributed one.

Furthermore, in analogy with the invariance of H obtained in the case of distributed loadings satisfying
Eq. (27), the continuity of H is restored for a special combination of the tangential force component F0t and
the moment M0 corresponding to

F0t +M0 ⟨θ′(s0)⟩ = 0 ⇔ JH(s0)K = 0. (30)

Discontinuity due to bending stiffness jump. The Hamiltonian H has a discontinuity at the coordinate s0 if
the bending stiffness a jumps, a(s+0 ) ̸= a(s−0 ). In this case, although the axial force Nt and the moment M
are both continuous at s0 due to the absence of external loadings, a jump in the curvature θ′(s) is displayed,
which in turn leads to a jump there in the Hamiltonian H (24). By recalling the constitutive relation (20),
the jump of H at s0 reduces to JH(s0)K = M(s0) Jθ′(s0)K /2. It is worth observing that such a jump value is
consistent with the configurational (or material) force reported by Kienzler and Herrmann (1986), see their
Eq. (24) and (25).

4. Equilibrium equations for the compound rod model

The large deformation of a flexible rod (sub-rod 2) partially inserted into a flexible sleeve (sub-rod 1) is
depicted in Fig. 4. The bending stiffness of the sleeve equals a1 and that of the rod equals a2, such that
the effective bending stiffness of the compound rod model in the overlapping region is a1 + a2. Changing
the ratio a1/a2 from 1 to +∞, we make a smooth transition from the symmetric setting to the classic case
of a rigid sleeve. Unlike the simple example in Section 2, we now seek the equilibrium of the compound
system in a geometrically nonlinear setup. Again, the single material coordinate s parametrizes the entire
compound rod, whose both ends are hinged on the x axis with the size of the span 2L− ℓ0, where ℓ0 is the
length of the overlapping region in the unloaded (undeformed) state subject to ℓ0 ∈ (0, L). For the quantities
x, y, θ,N ,M, t,n, we use the symbol g̊(s) to denote for the generic function g(s) in the overlapping region,
and indices g1(s) or g2(s) refer to individual sub-rods.

The generic configuration of the inextensible compound rod with variable domain is described by the
inclination θ(s) and the current overlapping length ℓ ∈ (0, L). Considering that the inclination θ(s) displays
a first derivative jump at the points A and B, associated with the coordinates sA = L− ℓ and sB = L, it is
instrumental to consider three continuous inclination functions, namely the two inclinations θ1(s) and θ2(s),

respectively of sub-rod 1 and 2 outside the overlapping region, and the inclination θ̊(s) of the compound rod
along the overlapping region, namely

θ(s) =


θ1(s), s ∈ [0, L− ℓ] ,

θ̊(s), s ∈ [L− ℓ, L] ,

θ2(s), s ∈ [L, 2L− ℓ] .

(31)
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y

x

A : sA = L− ℓ
a1, θ1

a1 + a2, θ̊

B : sB = L

a2, θ2

s

O : sO = 0
xO = 0, yO = 0

C : sC = 2L− ℓ
xC = 2L− ℓ0, yC = 0

−R

R
Tl Tr

Figure 4: Flexible rod (2, blue) partially inserted in a flexible sleeve (1, red) with transition points A and B and imposed
distance between the two supports in O and C defined as 2L− ℓ0> L. The externally applied bending moments Tl and Tr, as
well as the reaction forces R and −R, are plotted at the hinged end points. The presented shape is the equilibrium solution
for a1 = 1.5, a2 = 1, L = 1, ℓ0 = 0.5, and Tl = Tr = 1 (SI units) computed using the code presented in Fig. 7.

The flexible sleeve system can be interpreted as a compound inextensible rod with variable domains and
a piecewise constant bending stiffness a(s) having discontinuities located at the transition points A and B,
namely

a(s) =


a1, s ∈ [0, L− ℓ) ,

a1 + a2, s ∈ (L− ℓ, L) ,

a2, s ∈ (L, 2L− ℓ] ,

(32)

from which the linear constitutive response (20) follows as

M(s) =


M1(s) = a1θ

′
1(s), s ∈ [0, L− ℓ] ,

M̊(s) = (a1 + a2)θ̊
′(s), s ∈ [L− ℓ, L] ,

M2(s) = a2θ
′
2(s), s ∈ [L, 2L− ℓ] .

(33)

A variational approach is used to derive the equations governing the equilibrium of the system. The
total potential energy V is given by the difference between the bending elastic energy E and the work W
done by the two end moments Tl and Tr (respectively at points O, s = 0, and C, s = 2L− ℓ)

V = E −W, (34)

where E = E1 + E̊ + E2, with

E1 =
a1
2

∫ L−ℓ

0

(θ′1(s))
2
ds, E̊ =

a1 + a2
2

∫ L

L−ℓ

(
θ̊′(s)

)2
ds, E2 =

a2
2

∫ 2L−ℓ

L

(θ′2(s))
2
ds, (35)

and
W = Tlθ1(0)− Trθ2(2L− ℓ). (36)

The stationarity of the total potential energy V under the kinematic constraints

dA = θ1(L− ℓ)− θ̊(L− ℓ) = 0,

dB = θ̊(L)− θ2(L) = 0,

dC =

∫ L−ℓ

0

t1(s) ds+

∫ L

L−ℓ

t̊(s) ds+

∫ 2L−ℓ

L

t2(s) ds− (2L− ℓ0)ex = 0,

(37)

can be addressed by considering the Lagrangian L,

L
(
θ1(s), θ̊(s), θ2(s), ℓ

)
= V − µA dA − µB dB −R · dC , (38)

10



defined as the potential energy V enhanced by the presence of Lagrange multipliers µA and µB (representative
of bending moment values at the respective cross-sections) and R (representative of the reaction force at
the right support), respectively multiplied by the constraints dA, dB , and dC , representing 4 equivalent
scalar constraints. The vectorial constraint dC concerns the given relative position of the right end and
comprises two scalar conditions, while the scalar constraints dA and dB respectively concern the continuity
of the tangent vector at the points A and B,

t1A = t̊A, t2B = t̊B , (39)

where the following symbology has been introduced (with reference to a generic function g)

g1A = g1(s = L− ℓ), g̊A = g̊(s = L− ℓ), g2B = g2(s = L), g̊B = g̊(s = L). (40)

The equilibrium configurations for the system are associated with extrema of the Lagrangian L, which
implies that the first variation L

L = V − µAdA − µBdB −R · dC , (41)

(where the overbar stands for the variation of the relevant quantity) must vanish at all possible values of

independent variations θ1(s), θ̊(s), θ2(s), and ℓ. Through the Leibniz rule and integration by parts, the first
variation L is found to be

L = −
∫ L−ℓ

0

[a1 θ
′′
1 (s) +R · n1(s)] θ1(s) ds−

∫ L

L−ℓ

[
(a1 + a2) θ̊

′′(s) +R · n̊(s)
]
θ̊(s) ds

−
∫ 2L−ℓ

L

[a2 θ
′′
2 (s) +R · n2(s)] θ2(s) ds− [a1 θ

′
1O + Tl] θ1O + [a1 θ

′
1A − µA] θ1A

−
[
(a1 + a2) θ̊

′
A − µA

]
θ̊A +

[
(a1 + a2) θ̊

′
B − µB

]
θ̊B − [a2 θ

′
2B − µB ] θ2B + [a2 θ

′
2C + Tr] θ2C

+

{
−1

2

[
a1 (θ

′
1A)

2 − (a1 + a2)
(
θ̊′A

)2
+ a2 (θ

′
2C)

2

]
+R · t2C + µA

(
θ′1A − θ̊′A

)
− Trθ

′
2C

}
ℓ,

(42)

where, in addition to (40), the further symbology is also introduced (with reference to a generic function g)

g1O = g1(s = 0), g2C = g2(s = 2L− ℓ). (43)

Requiring the first variation L to vanish for every variation θ1(s), θ̊(s), and θ2(s) yields the nonlinear
equilibrium equations, expressed by the celebrated elastic equations, for the compound system across the
three regions 

a1 θ
′′
1 (s) +N1n(s) = 0, s ∈ [0, L− ℓ] ,

(a1 + a2) θ̊
′′(s) + N̊n(s) = 0, s ∈ [L− ℓ, L] ,

a2 θ
′′
2 (s) +N2n(s) = 0, s ∈ [L, 2L− ℓ] .

(44)

Here
N1n(s) = R · n1(s), N̊n(s) = R · n̊(s), N2n(s) = R · n2(s), (45)

together with the boundary conditions at the two end points O and C

a1 θ
′
1O = −Tl, a2 θ

′
2C = −Tr, (46)

and the values of the Lagrange multipliers µA and µB

µA = a1 θ
′
1A = (a1 + a2) θ̊

′
A, µB = (a1 + a2) θ̊

′
B = a2 θ

′
2B , (47)
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confirming the curvature jumps at points A and B, namely,

θ̊′A =
a1

a1 + a2
θ′1A, θ̊′B =

a2
a1 + a2

θ′2B . (48)

Using (47) and (33), we see that the Lagrange multipliers µA and µB stand for the values of the bending
moment at point A and B. In contrast to the curvature, the bending moment is found to be continuous at
these points:

µA = M1A = M̊A, µB = M2B = M̊B . (49)

By setting ℓ = 0, that is constraining the length ℓ of the overlapping region to a fixed value, the
conventional problem of an elastica with a piecewise-constant bending stiffness would be obtained. However,
the frictionless sliding condition between the two flexible sub-rods implies that the overlapping region length
ℓ is free to vary. The first variation L must therefore vanish for every variation ℓ ̸= 0, and taking into
account Eq. (47), Eq. (48) we arrive at

a1
2

(θ′1A)
2 − a1 + a2

2

(
θ̊′A

)2
+

a2
2

(θ′2C)
2
+R · t2C = 0. (50)

For each of the three regions, we introduce the corresponding Hamiltonian (see Eq. (24))

H1 =
a1
2

(θ′1(s))
2
+N1t(s), s ∈ [0, L− ℓ] ,

H̊ =
a1 + a2

2

(
θ̊′(s)

)2
+ N̊t(s), s ∈ [L− ℓ, L] ,

H2 =
a2
2

(θ′2(s))
2
+N2t(s), s ∈ [L, 2L− ℓ] ,

(51)

where
N1t(s) = R · t1(s), N̊t(s) = R · t̊(s), N2t(s) = R · t2(s). (52)

As no distributed loads are applied, each of these quantities is conserved in each region, H′
1 = 0, H̊′ = 0,

and H′
2 = 0. Recalling the tangent vector continuity at point A, Eq. (39)1, the frictionless sliding condition

(50) is rewritten as
H1 +H2 = H̊. (53)

The set of three nonlinear ordinary differential equations (44), complemented by the boundary conditions
(46), the frictionless sliding condition (53), and the interface conditions (48) form a well-defined boundary
value problem (BVP) once the parameters a1, a2, L, ℓ0 and loads Tl and Tr are set. Solving this nonlinear
BVP leads to the, possibly non-unique, equilibrium configuration of the flexible sleeve system described by
the inclinations θ1(s), θ̊(s), and θ2(s), and the overlapping length ℓ. It is worth highlighting that, in analogy
with the elastica sling problem (Cazzolli and Dal Corso, 2024), by imposing the frictionless sliding condition
(53), the specific compound rod is identified within the family of equilibrated compound systems of length
2L− ℓ as the one providing a stationary value in ℓ for the corresponding potential V(ℓ).

5. Interaction forces between the two sub-rods and corresponding internal forces

The equations governing the equilibrium have been obtained in the previous Section for the compound
system, without providing any information about the interactions between the two sub-rods in the overlap-
ping region. This aspect is addressed here with the aim to compute the values of the internal force N̊ j(s)

and moment M̊j(s) present in the j-th sub-rod (j = 1, 2). At equilibrium, the resultants of these forces and
moments represent the global force and moment of the compound system:

N̊(s) = N̊1(s) + N̊2(s) = R, M̊(s) = M̊1(s) + M̊2(s). (54)
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The distribution rule for the moment M̊j(s) in the j-th sub-rod easily follows from the linear constitutive
bending relation (20) and Eq. (33)2,

M̊j(s) =
aj

a1 + a2
M̊(s), j = 1, 2, (55)

implying that the two internal moments are proportional one to each other through the bending stiffness
ratio a2/a1

M̊2(s)

M̊1(s)
=

a2
a1

. (56)

In contrast with the internal moment M̊j(s), the evaluation of the internal force N̊ j(s) (j = 1, 2) requires
a deeper analysis, developed in the next Subsections (and complemented by the Appendices).

5.1. Interaction at the end points of the overlapping region

In this Subsection, we will extend the micromechanical approaches introduced by Balabukh et al. (1970);
Bigoni et al. (2015); Dal Corso et al. (2017), where a flexible rod was inserted into a flat or curved rigid
channel with a clearance. It will be shown in Section 5.1.1 that the tangential component of the interaction
force at transition point A is given by

N̊2At = − a2(2a1 + a2)

(a1 + a2)2︸ ︷︷ ︸
∈(0,1)

M2
A

2a1
= − a2(2a1 + a2)

(a1 + a2)2︸ ︷︷ ︸
∈(0,1)

a1 (θ
′
1A)

2

2
= −a2(2a1 + a2)

2a1

(
θ̊′A

)2
, (57)

and at point B given by

N̊1Bt = − a1(a1 + 2a2)

(a1 + a2)2︸ ︷︷ ︸
∈(0,1)

M2
B

2a2
= − a1(a1 + 2a2)

(a1 + a2)2︸ ︷︷ ︸
∈(0,1)

a2 (θ
′
2B)

2

2
= −a1(a1 + 2a2)

2a2

(
θ̊′B

)2
, (58)

showing that the axial force jump at the entrance of a flexible sleeve is always smaller in magnitude than
that of the rigid limit (Bigoni et al., 2015). On the other hand, the axial force jump vanishes for vanishing
bending stiffness of the rod ending at the transition point. Furthermore, the obtained expressions imply that
the Hamiltonian invariant Hj along the j-th rod (j = 1, 2) is continuous at the corresponding transition
point, and takes a negative value, see Section 5.1.2. The invariant Hj is expressed as a function of the
sub-rods bending stiffnesses and the curvature at the transition point, namely

H̊1A = H1 = −a1(a1 + a2)

2a2

(
θ̊′B

)2
≤ 0, H̊2B = H2 = −a2(a1 + a2)

2a1

(
θ̊′A

)2
≤ 0. (59)

Anticipating the absence of any distributed tangential force and interaction moment, a consequence of
Eq. (59) is that the equilibrium of the flexible sliding sleeve implies that each sub-rod is never subject to a
tensile state: {

N1t(s), N̊1t(s), N̊2t(s), N2t(s)
}
≤ 0, ∀s. (60)

Additionally, force balance for sub-rod 1 at point A yields N̊1At − N1At + N̊2At = 0 and Eq. (57) implies
N̊1At > N1At. Consequently, the compression in sub-rod 1 is larger just outside the overlapping region (just
before A) than inside it (just after A). As the same can be said for sub-rod 2 at point B, in summary we
have

N1t(L− ℓ) <
{
N̊1t(L− ℓ), N̊2t(L− ℓ)

}
< 0, N2t(L) <

{
N̊1t(L), N̊2t(L)

}
< 0. (61)

Moreover, the ratio of the two invariants follows from Eq. (59) as

H1

H2
=

(
a1
a2

M̊B

M̊A

)2

=

(
M̊1B

M̊2A

)2

=

(
θ′2B
θ′1A

)2

. (62)
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It is noted that, as found for the elastica sling problem (Cazzolli and Dal Corso, 2024), in the limit case
of one sub-rod infinitely stiffer than the other, and in the case where the stiffer rod goes flat, the invariant
associated with the softer sub-rod vanishes,

if
aj
ai

→ ∞ ⇒ Hi = 0, i, j = 1, 2, i ̸= j. (63)

5.1.1. Interaction tangential forces from micromechanical approach

At each end point of the overlapping region, in the case the flexible sleeve has a clearance, two points can
be identified: (i) the last cross-section having both sub-rods present and (ii) the last cross-section having
both sub-rods with the same curvature. A sketch of the corresponding configuration is reported in Fig. 5
(left) for the left end point of the overlapping region, where the two points are called A− and A+. At these

two points, the inclinations are noted θ−1A and θ̊+A , and frictionless contact forces

F−
A[12] = −F−

A[21], F+
A[12] = −F+

A[21] (64)

are defined in such a way that F±
A[ij] is the concentrated frictionless contact force exerted by the i-th sub-rod

on the j-th sub-rod at point A± (i, j = 1, 2 with i ̸= j). It is observed that the contact forces at the two
points are not self-balanced, therefore a non-null resultant FA[12] is realized at the considered transition
point A,

FA[12] = F+
A[12] + F−

A[12]. (65)

As the following analysis is of interest under the assumption of small clearance, the distance between the
points A− and A+ is approximated with the curvilinear distance d, and geometrically linear computations
are performed.

+A

F
d

M2A 

 +F

A
+AA

1A 1/    ’A

A 1A

+

+A

F

 +Fd
A

+ M1A 

_

M1A 

+
A[12]

A[12]

A[21]

A[21]

+

N2At 

+
N1At 

+
N1At 

Figure 5: Micromechanics at the left transition point (A) of a frictionless flexible sleeve, considered in the imperfect case of
a small clearance. Deformed configuration showing contact points A− and A+ and the corresponding values of the radius

of curvature (1/
∣∣∣θ−1A′

∣∣∣ and 1/
∣∣∣θ̊+A ′∣∣∣), as well as the inclination difference

∣∣∣θ̊+A − θ−1A

∣∣∣ (left). Free-body diagram for sub-rod 2

(center) and sub-rod 1 (right).

The axial force N̊+
2At can be obtained from equilibrium as the projection of the contact force F−

A[12] as

follows (Fig. 5, center)

N̊+
2At = −

∣∣∣F−
A[12]

∣∣∣ ∣∣∣θ̊+A − θ−1A

∣∣∣ , (66)

while the bending moment M̊+
2A balances the moment realized by the contact force F−

A[12] at the distance d

(Fig. 5, center): ∣∣∣M̊+
2A

∣∣∣ = a2

∣∣∣θ̊+A ′∣∣∣ = ∣∣∣F−
A[12]

∣∣∣ d. (67)

For the present analysis, we make use of the geometrically linear assumption, which is reasonable because
the size of the zone we consider is small, and the local deformations are thus small as well. That means the
results are also applicable in the general finite rotations but small strain setting, the inclination difference
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∣∣∣θ̊+A − θ−1A

∣∣∣ for a rod of length d and stiffness a1 is obtained through the superposition of the effects due to

the moment M−
1A = a1θ

−
1A

′
and to the transverse concentrated force F−

A[21] (Fig. 5, right),

∣∣∣θ̊+A − θ−1A

∣∣∣ = ∣∣∣θ−1A′
∣∣∣ d−

∣∣∣F−
A[21]

∣∣∣ d2
2a1

. (68)

As the clearance vanishes, the distance d correspondingly approaches zero (d → 0)3 and the following limits
hold

N̊+
2At → N̊2At, θ−1A

′ → θ′1A, θ̊+A
′ → θ̊′A, (69)

and using Eqs. (67), (68), (66), and
∣∣∣F−

A[12]

∣∣∣ = ∣∣∣F−
A[21]

∣∣∣, the value of N̊2At is found to be given by Eq. (57).

The negative sign in Eq. (57) implies that the end of sub-rod 2, in the overlapping region, is always subject
to compression

N̊2At ≤ 0, (70)

A similar result was found by Cazzolli and Dal Corso (2024) in the case of the elastica sling. Analogous
computations at point B provide the value of N̊1Bt, see Eq. (58), and also show that its end is under
compression.

5.1.2. Continuity of the invariant H along the same sub-rod at the transition point

By considering the interface condition (48)1 and expressing the curvature jump at point A, we rewrite
the axial force N̊2At (57) as

N̊2At =
a1
2

[(
θ̊′A

)2
− (θ′1A)

2
]
≤ 0. (71)

Furthermore, writing equilibrium relation (54)1 at point A along the tangent direction yields

N̊2At = N1At − N̊1At. (72)

Then, by recalling the values H1 and H̊1A of the Hamiltonian in sub-rod 1, respectively along its non-
overlapping portion and at the end point of the overlapping region,

H1 = N1At +
a1
2

(θ′1A)
2
, H̊1A = N̊1At +

a1
2

(
θ̊′A

)2
, (73)

it is seen that the Hamiltonian H along sub-rod 1 is continuous at the transition point A, Eq. (59)1. An
analogous calculation performed for sub-rod 2 at point B yields Eq. (59)2. It follows that at point A (B)
the interaction forces M̊+

2A and FA[21] (M̊
−
1B and FB[12]) satisfy the condition provided by Eq. (30).

It is finally noted that the continuity property (59) for the Hamiltonian can be alternatively obtained
through the variational approach performed in the inextensible limit of extensible rods, as shown in Appendix
B.1.

5.2. Interaction along the overlapping region

In addition to the concentrated forces at the transition points (investigated in the previous Subsection),
the i-th sub-rod exerts a distributed force f [ij](s) and a distributed moment m[ij](s) on the j-th sub-rod
(i, j = 1, 2, with j ̸= i), Fig. 6, which for equilibrium satisfy

f [12](s) = −f [21](s), m[12](s) = −m[21](s), s ∈ (L− ℓ, L). (74)

3It is worth mentioning that, differently from previous micromechanical calculations performed for a rigid sliding sleeve
(Bigoni et al., 2015), the present passages show that the relation between the distance d and the clearance is unnecessary.
Indeed, it is sufficient to consider the limit of vanishing distance d → 0 to obtain the limiting value of the tangential resultant
N̊2At provided by the two concentrated forces in the case of a perfect (zero-clearance), flexible, frictionless sliding sleeve.
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f  (s)[21]

m  (s)[21]

f  (s)[12]

m  (s)[12]

Figure 6: Distributed interaction force f [ij](s) and moment m[ij](s) exerted by the i-th sub-rod on the j-th sub-rod (i, j = 1, 2,

with j ̸= i) along the overlapping region s ∈ (L− ℓ, L) (the rods are drawn with an offset for the sake of visualization). Due to
equilibrium, the two distributions satisfy Eq. (74). In Appendix B it is shown that, in the limit of unshearable and inextensible
rods, the frictionless condition implies vanishing interaction moment and tangential interaction force, m[ij](s) = f[ij]t(s) = 0.

Considering these interaction force and moment, the equilibrium equations (22) and (21) can be written
for the j-th sub-rod as

N̊ ′
jt(s) = −f[ij]t(s) + θ̊′(s)N̊jn(s),

N̊ ′
jn(s) = −f[ij]n(s)− θ̊′(s)N̊jt(s),

aj θ̊
′′(s) + N̊jn(s) +m[ij](s) = 0,

s ∈ [L− ℓ, L], i, j = 1, 2, i ̸= j. (75)

Recalling that the compound model is connected to the sub-rods model through Eq. (54), the summation
over j = 1, 2 of Eq. (75) leads to the equilibrium equations for the compound rod in the overlapping region

N̊ ′
t(s) = θ̊′(s)N̊n(s),

N̊ ′
n(s) = −θ̊′(s)N̊t(s),

(a1 + a2)θ̊
′′(s) + N̊n(s) = 0,

s ∈ [L− ℓ, L], (76)

which are coherent with equilibrium equations (19a) and (21) with f(s) = f [12](s) + f [21](s) = 0 and
m(s) = m[12](s)+m[21](s) = 0, as well as the moment equilibrium of the compound system, (44)2, obtained
using a variational approach.

How the internal force N̊(s) of the compound system is distributed among the two sub-rods as N̊1(s)

and N̊2(s) can only be settled through further information about f [ij](s) and m[ij](s).

Zero moment and tangential distributed interaction forces. Intuitively, the frictionless sliding between the
two sub-rods seems to be associated with the absence of distributed tangential force f[ij]t(s) = f [ij](s) · t̊(s)
and distributed moment m[ij](s),

f[ij]t(s) = m[ij](s) = 0, s ∈ [L− ℓ, L], i, j = 1, 2, i ̸= j. (77)

We formally prove this absence in Appendix B.1 and Appendix B.2 through a variational approach involving
axial and shear deformability of both sub-rods and their inextensible and unshearable limit.

Internal forces and Hamiltonian expressions for the sub-rods. In the light of Eq. (77), the equilibrium
equations (75) imply the following distribution rule of the internal shear force N̊jn(s) in the j-th sub-rod:

N̊jn(s) =
aj

a1 + a2
N̊n(s), s ∈ [L− ℓ, L], j = 1, 2. (78)

Similarly to the distribution rule for the bending moments in Eq. (55), the internal shear forces in the
sub-rods are thus proportional to each other through the bending stiffness ratio

N̊2n(s)

N̊1n(s)
=

a2
a1

, s ∈ [L− ℓ, L]. (79)
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However, the equilibrium considerations, including the jump conditions in the transition points, do not
allow for drawing a conclusion regarding the distribution of the axial force N̊t = N̊1t+ N̊2t between the sub-
rods. This static indeterminacy is resolved either by using the micromechanical approach as of Section 5.1.1
or by the extended variational procedure, presented in Section B.14. Indeed, due to the vanishing of the
interaction tangential force and moment (77), the conservation law Eq. (26) holds for each sub-rod in the
overlapping region, and therefore

H̊j(s) =
aj
2

(
θ̊′(s)

)2
+ N̊jt(s) = H̊j , s ∈ [L− ℓ, L], j = 1, 2. (80)

Together with Eq. (59) this implies that the Hamiltonian along each sub-rod composing the frictionless
sliding sleeve has a unique constant value in both the overlapping and the non-overlapping regions,

H̊j = Hj , j = 1, 2. (81)

The exploitation of this important and elegant result in Eq. (53) and the projection of Eq. (54) along t̊(s)
lead to the evaluation of the internal axial forces N̊jt(s) as

N̊1t(s)

N̊2t(s)

}
=

N̊t(s)

2
± 1

2

[
a2 − a1

2

(
θ̊′(s)

)2
+ H̊1 − H̊2

]
, s ∈ [L− ℓ, L]. (82)

Furthermore, using Eqs. (51), (57), (58), and (81) we find that

H̊1 − H̊2 =
a1 a2

2(a1 + a2)

[
(θ′1A)

2 − (θ′2B)
2
]
. (83)

It follows that, unlike the shear forces N̊jn(s) and moment M̊j(s), Eqs. (56) and (79), the ratio of the internal

axial forces N̊jt(s) is in general not constant:

N̊2t(s)

N̊1t(s)
=

a2
a1

N̊t(s)−
a1
a2

(
a2
a1

H̊1 − H̊2

)
N̊t(s) +

a2
a1

H̊1 − H̊2

, s ∈ [L− ℓ, L]. (84)

Finally, from Eqs. (78) and (82), the internal force N̊ j(s) can be written as

N̊1(s) =
a1

a1 + a2

[
R+

(
a2
a1

H̊1 − H̊2

)
t̊(s)

]
,

N̊2(s) =
a2

a1 + a2

[
R−

(
H̊1 −

a1
a2

H̊2

)
t̊(s)

]
,

s ∈ [L− ℓ, L]. (85)

The evaluation of the internal forces N̊1(s) and N̊2(s) at the transition points A and B provide the values
of the interaction contact forces FA[12] and FB[12] as

FA[12] = −N̊2(L− ℓ), FB[21] = N̊1(L). (86)

Distributed normal interaction force. Inserting Eq. (85) in the sub-rod equilibrium equations (75) and in-
troducing the (distributed normal) contact force parameter Λij as

Λij =
aj Hi − aiHj

a1 + a2
, (87)

the normal component f[ij]n(s) of the distributed interaction force is evaluated to be

f[ij]n(s) = Λij θ̊
′(s), s ∈ (L− ℓ, L), i, j = 1, 2, i ̸= j, (88)

which is linear in the local value of the curvature θ̊′(s), but nonlinear in the global bending amplitude of
the system.
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Small rotation limit. Even in the geometrically linear setting, when the rotation field θ(s) is assumed to
have an amplitude scaling with a small parameter p, the invariant H is quadratic in the rotation amplitude
and the normal component f[ij]n(s) of the distributed interaction force is cubic in p

θ(s) ∼ p ⇒ H ∼ p2 ⇒ f[ij]n(s) ∼ p3, (89)

and therefore its contribution can be neglected in small rotation analyses as performed in Section 2.

Vanishing distributed interaction force. It is noted that, in addition to the trivial configuration θ(s) = 0,
the ratio in the internal axial forces N̊2t(s)/N̊1t(s) becomes constant and f[ij]n(s) vanishes in the particular
case where

a2H̊1 = a1H̊2 ⇔

(
M̊B

M̊A

)2

=
a2
a1

⇒ N̊2t(s)

N̊1t(s)
=

a2
a1

and f[ij]n(s) = Λij = 0, s ∈ [L− ℓ, L].

(90)
This particular condition not only occurs under symmetric stiffness (a1 = a2) and configuration (θ(s) =
θ(2L− s)), but it may also occur under nonsymmetric conditions, as shown in the case study presented in
Section 6.

Reconnecting with global equilibrium. It is finally remarked that by integrating Eq. (17)∫ L

L−ℓ

θ′(s)n(s)ds = t(L)− t(L− ℓ), (91)

and using Eqns. (85), (86), (88) the equilibrium of each sub-rod is automatically satisfied

−R+ FA[21] + FB[21] +

∫ L

L−ℓ

f[21]nn(s)ds = 0, for sub-rod 1,

R+ FA[12] + FB[12] +

∫ L

L−ℓ

f[12]nn(s)ds = 0, for sub-rod 2.

(92)

Moreover, the projection along ex and ey of Eq. (92) provides the reaction components Rx and Ry as

Rx = N̊2At cos θA − N̊2An sin θA︸ ︷︷ ︸
−FA[12]x

+ N̊1Bt cos θB − N̊1Bn sin θB︸ ︷︷ ︸
−FB[12]x

−
∫ L

L−ℓ

f[12]n(s) sin θ̊(s)ds,

Ry = N̊2At sin θA + N̊2An cos θA︸ ︷︷ ︸
−FA[12]y

+ N̊1Bt sin θB + N̊1Bn cos θB︸ ︷︷ ︸
−FB[12]y

−
∫ L

L−ℓ

f[12]n(s) cos θ̊(s)ds,

(93)

whose approximated expressions under linearized kinematics were given by Eq. (13).

6. Results from nonlinear analysis and two different ejection mechanisms

6.1. Numerical solver for the nonlinear boundary value problem

We begin this Section with a brief presentation on our implementation of the shooting method for solving
the nonlinear BVP governing the equilibrium of the compound rod model. The system features a set of
three nonlinear differential (elastica) equations (44), two boundary conditions (46), and the frictionless
sliding condition (53) for the additional unknown ℓ. The Wolfram Mathematica4 code featuring a minimal
example for a nonsymmetric setup is demonstrated in Fig. 7. This code handles a case with symmetric

4https://www.wolfram.com/mathematica

18

https://www.wolfram.com/mathematica


Figure 7: Wolfram Mathematica source code for solving the nonlinear BVP using the method of shooting and computing the
equilibrium configuration for symmetric external bending moments Tr = Tl = T0. Out[4] provides the deformed configuration
with the overlapping region displayed in red and the non-overlapping regions in blue.

loads Tr = Tl = T0 but nonsymmetric rod properties a1 ̸= a2, and it is easily extendable to other loading
scenarios, as well as parametric studies.

The core of the implementation is the user function zero. Given a current guess of the rotation angle at
the left support θ0, the internal force components Nx and Ny (which are also the components of the reaction
force R at the right support), and the overlapping length ℓ, this function solves an initial value problem using
the routine NDSolve. This problem involves the equation for the equilibrium of moments, the constitutive
relation defined piecewise as a function of the bending stiffness a(s) (with Wolfram Mathematica correctly
handling the jump conditions), and the kinematic relations for x(s) and y(s). As a result, the function
returns the mismatches in the end positions x(sC), y(sC), the error in the end bending moment M(sC)+T0

as well as the residuum of the frictionless sliding condition H1 +H2 − H̊. The FindRoot routine afterwards
finds ‘good values’ of the guesses for θ0, Nx, Ny and ℓ such that the residua vanish and all equilibrium
equations are satisfied. The numerical values of the variables we solve for, as well as a plot of the deformed
shape, are provided in the bottom of Fig. 7; the parameter set matches the values given in the caption
of Fig. 4. It remains to mention that a non-material finite element model may alternatively be used for
minimizing the total energy V as in Eq. (34) with respect to the configuration of the compound rod and
the configurational parameter ℓ. For the details of the re-parametrisation of the material coordinate s by
a normalized one in each segment, such that the transition points always match with nodal points of the
mesh, we refer to Vetyukov (2024) as well as to Vetyukov et al. (2024).
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Figure 8: Equilibrium path for the symmetric setup of Section 6.2, where ℓ0 = 0.5. The length of the overlapping region (left)
and the maximum transverse deflection (right) are plotted as functions of the external moment T0, showing both a vertical
asymptote at the critical point T ∗

0 , with ℓ(T ∗
0 ) ≈ 0.32.

6.2. First example: symmetric setup with snapping instability

As a first example, we focus on a fully symmetric setup with a1 = a2 = 1, L = 1 and ℓ0 = 0.5 (SI
system of units is used throughout the paper). The distributed interaction force Eq. (88) vanishes because
of the symmetry of the setup a1 = a2 and of the solution H1 = H2, such that the sub-rods interact
only at the transition points. Monotonically increasing the load factor Tl = Tr = T0 in small steps from
the unloaded state, we obtain an equilibrium path providing the overlapping length ℓ(T0) and the mid-
point deflection ymid(T0) as plotted in Fig. 8. Note that the initial slope ∂ymid/∂T0|T0=0 corresponds to the
solution of the linear beam theory for unit moment load, while the horizontal tangent of the other curve with
∂ℓ/∂T0|T0=0 = 0 confirms that the overlapping length change is a second order effect under small rotation
conditions. As the moment loading progresses, the length ℓ decreases faster, while the deflection ymid shows
a softening behavior. Eventually, both curves approach a vertical asymptote at the critical moment value
of T ∗

0 = 0.868, which represents the maximum bearing capacity and, for this system, is associated with a
fold bifurcation of the equilibrium path and a snap-through instability. Although only a dynamic analysis
could accurately describe this instability, it is expected that the two sub-rods will dynamically slip out
from each other, starting from the length ℓ(T ∗

0 ) ≈ 0.32 until complete expulsion. The hypothesis that full
ejection results from the snapping instability is supported by the rapidly decreasing value of ℓ(T0) beforce
the snapping point. We also remark that no equilibria with overlapping regions could be found in numerical
experiments for T0 > T ∗

0 .
The catastrophic scenario of complete expulsion can be explained in simple words by the self-destabilizing

property of the horizontal reaction force Rx. Indeed, this repelling force is growing proportional to the square
of the curvature. When the deflections y(s) become substantial, this constraint reaction begins to contribute
to the bending moment and thus to the curvature. This positive feedback results in a stability loss.

6.3. Second example: symmetric setup, ejection by exhausting the overlapping length

This second example differs from the first one just in the value of ℓ0: the initial length of the overlapping
region ℓ = 0.1 is now small. From the respective simulation results plotted for ℓ(T0), ymid(T0) in Fig. 9, we
observe that the maximum bearing capacity is reached now without any stiffness loss, but is associated with
a different scenario: the vanishing of the overlapping length ℓ at the critical moment value T ∗

0 = 0.5004. A
limited softening can be also seen in the deflection behavior at growing load. Interestingly, an attempt to
estimate the critical moment value T ∗

0 by simple geometrical considerations fails: assuming the rod to have
a constant curvature given by T ∗

0 /a1 ≈ 0.5 in the critical state ℓ = 0 and knowing its total length 2L = 2,
we would compute the distance between the end points of this circular arc as 4 sin(0.5) = 1.9177 > 1.9. This
means that the curvature must be significantly higher and underlines the importance of the compressive
force in the elastic response. An accurate analytical estimation of T ∗

0 using the second order beam theory
is possible, although non-trivial.
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Figure 9: Equilibrium path for the symmetric setup of Section 6.3, where ℓ0 = 0.1. The length of the overlapping region (left)
and the maximum transverse deflection (right) are plotted as functions of the external moment T0. Note that the length of the
overlapping region vanishes at the critical point T ∗

0 .
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Figure 10: Curvature distribution for the unsymmetric setup of Section 6.4, where a1 = 1.5 ̸= a2 = 1.

6.4. Third example: nonsymmetric case, analysis of axial force

We now consider symmetric external loads Tr = Tl = T0 = 1 but unequal bending rigidities a1 = 1.5,
a2 = 1, while L = 1 and ℓ0 = 0.5. This corresponds to the (nonsymmetrical) configuration shown in Fig. 4,
which is computed in Fig. 7, and results in5

ℓ = 0.3879, Nx = −0.9532, Ny = 0, H1 = −0.4535, H̊ = −0.6497, H2 = −0.1962, (94)

confirming that the sliding condition Eq. (53) is satisfied. In Fig. 10 we plot the curvature θ′(s) and specify
respective values at the transition points. These values naturally satisfy the jump conditions, Eq. (48).
Moreover, the square of the ratio of the curvatures at the transition points equals the ratio of the Hamiltonian
invariants, as stated by Eq. (62).

Distribution of the axial force Nt in the entire compound rod and in the individual sub-rods is shown in
Fig. 11. While in the left and right segments we merely plot Nit = Nt = −R ·t = Rx cos θ (because Ry = 0),
in the overlapping region we make use of the continuity of the invariants Eq. (81) and evaluate the tension

in the sub-rods according to Eq. (73) as Nit = Hi − ai(θ̊
′)2/2. Plotting the distributions using Eq. (82), we

would of course obtain identical curves. In Fig. 11 we also indicate the jumps in the axial forces within the
sub-rods, which are the tangential components of the interaction forces acting between the sub-rods at the

5 A Wolfram Mathematica notebook featuring computations, presented in this subsection is provided in Supplementary
Material.
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Figure 11: Distribution of the tension (axial force) in the sub-rods for the unsymmetric setup of Section 6.4, where a1 = 1.5 ̸=
a2 = 1.

transition points. The magnitudes of these jumps perfectly correspond to the results of computations using
Eq. (71) with the curvatures as in Fig. 10.

We conclude the example by demonstrating the balance of forces for the sub-rod 2 according to Eq. (92).
From the solution of the BVP, we obtain the rotation angles at the two transition points, θA = 0.13979 and
θB = −0.050601, which determines the respective unit tangent vectors t̊A and t̊B . Using now Eq. (85) and
Eq. (86), we evaluate the concentrated interaction forces exerted by sub-rod 1 on sub-rod 2 at the transition
points A and B:

FA[12] = 0.31822 ex − 0.00887 ey, FB[12] = 0.63554 ex − 0.00322 ey. (95)

We find the interaction force in the overlapping region by using Eq. (88) as

f [12](s) = f[12]n(s)n̊(s) = Λ12 θ̊
′(s) n̊(s), (96)

where the numerical value of the contact force parameter is Λ12 = −0.06369. The integral of f [12] over the

overlapping region can be computed numerically using the numerical solution θ̊(s) of the BVP. The identity
expressed by Eq. (91), however, allows to avoid the integration and the resultant of f [12] can be evaluated
as ∫ L

L−ℓ

Λ12 θ̊
′(s) n̊(s) ds = Λ12 (tB − tA) = −0.00054 ex + 0.01210 ey. (97)

Adding the different terms according to Eq. (92) and taking into account R = Nxex = −0.953217 ex, we
obtain a zero vector up to a small round-off error. The computation also gives an indication on the orders
of magnitude of different forces for the considered case: the horizontal interaction is dominant and is almost
solely due to the concentrated forces, while the contribution of pressure f[12]n to the balance of forces in the
x direction is of minor importance. Regarding the force balance in the y direction, all three terms are of the
same order of magnitude.

6.5. Fourth example: changing sign of the distributed contact force in the overlapping region

In this last example, we consider the same setting as in the third one, but vary the bending moment at
the right end according to the factor rT :

Tl = 1, Tr = rTTl. (98)

In doing so, we aim to demonstrate that the contact force parameter Λ12 in Eq. (96) (see also Eq. (88))
may vanish and change sign. The consequence is that there would be no normal distributed contact force,
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Figure 12: Contact force parameter Λ12 (87) as a function of the moment ratio rT for the nonsymmetric example of Section 6.5.
Within the considered range, the plot shows that two different values exist for the moment ratio rT ≈ {−0.93, 0.48} such that
the contact force parameter vanishes, Λ12 = 0. For these two values the distributed normal contact force between the two
sub-rods identically vanishes along the entire overlapping region.
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Figure 13: Deformed shapes and distribution of normal contact force for different moment ratios rT = {−1.3, 0, 1}, see
Section 6.5. The normal force distribution changes direction when the moment is reduced at the right end, and the force
vanishes at the inflection point when rT = −1.3. Note that, for simplicity of representation, only the contact force distribution
is plotted, while the concentrated interaction forces and moments at the transition points are not represented.

f[12]n = 0, and therefore the sub-rods would interact only at the transition points even in an essentially
nonsymmetric setup (a1 ̸= a2 and Tr ̸= Tl). The simulation results shown in Fig. 12 demonstrate that
indeed the contact force parameter Λ12 turns out to vanish for at least one positive (rT ≈ 0.48) and one
negative (rT ≈ −0.93) value of the moment ratio rT (rT < 0 corresponds to a loading in which the bending
moments left and right are acting in the same direction, yielding a deformed state with an inflection point).

In Fig. 13 we demonstrate the deformed states and (differently scaled) distributions of the contact force
in the overlapping region for three values of rT = {−1.3, 0, 1}. We see the change in the direction of f[12]n
between rT = 1 (equal moments left and right) and rT = 0 (no moment right), in agreement with the value
rT ≈ 0.48 for which the distributed contact force vanishes. Additionally, we show that f[12]n(s) changes sign

along the overlapping region when an inflection point θ̊′(s) = 0 is present, as in the case where rT = −1.3.

7. Conclusion

We have extended the analysis of planar flexible structures constrained by a frictionless sliding sleeve to
the case where the constraint itself is also flexible, uncovering the equilibrium configuration and interaction
between the two sub-rods. To achieve this, we first applied a variational approach to the compound system,

23



deriving the equilibrium equations that govern its shape. These correspond to the well-known nonlinear
differential equation of the elastica, adapted to reflect the bending stiffness of each relevant portion of the
compound system, now complemented by a nonlinear algebraic equation interpreted as a frictionless sliding
condition. The nonlinear algebraic equation ensures stationarity of the potential energy with respect to
the overlapping length – measuring the interaction region where the two sub-rods remain in contact – at
equilibrium. Furthermore, by employing both micromechanical and variational approaches to the system,
modeled as two distinct sub-rods, we derive closed-form expressions for the interaction forces and moments.
These expressions allow to describe both the concentrated and distributed interaction occurring respectively
at the contact end points and across the whole contact region, revealing their dependence on the bending
stiffnesses of the two sub-rods. More specifically, we demonstrated that, at equilibrium:

• whenever the flexible sleeve is bent, each sub-rod is entirely under compression (negative internal axial
force, Nt < 0), meaning the interaction between the two sub-rods is of a ‘repulsive’ nature (with
magnitude bounded by the value of the rigid limit (Bigoni et al., 2015));

• the interaction within the overlapping region occurs solely through a normal contact force distribution
fn, while both tangential force and moment distributions are zero, ft = 0 and m = 0. The local
value of the normal distributed force is directly proportional to the local curvature, modulated by a
multiplicative factor that may vanish under specific configurations, but yet depends nonlinearly on the
global bending amplitude of the system;

• the Hamiltonian Hj , defined as the sum of bending energy density and internal axial force, remains
conserved along the j-th sub-rod. Consequently, it has no discontinuity at the end points of the contact
region, despite the presence of concentrated interaction forces and moments.

It is noted that the continuity of Hj associated with the j-th sub-rod at the respective transition point can be
understood from the micromechanical approach, since the interaction forces there are normal to the relevant
j-th sub-rod and the Hamiltonian Hj is known to be conserved in the presence of normal (frictionless)
contact forces (O’Reilly, 2017; Neukirch and Bertails-Descoubes, 2025) as evident from Fig. 5. Moreover,
the present finding regarding the continuity of Hj at transition points is consistent with the observation that
jumps of Hj are due to pseudomomentums or configurational forces (Hanna et al., 2018; O’Reilly, 2017).

Through the development of a simple numerical code, we analyzed various case studies, uncovering two
distinct mechanisms of attaining the load-bearing capacity of the flexible sliding sleeve. Broadly speaking,
our results suggest that the maximum capacity is attained either through a quasi-static, complete loss of
overlap between the two sub-rods – occurring when the initial overlapping length of the flexible sleeve in its
unloaded state is small – or through a snap-through instability when the initial overlapping length is larger.
In the latter case, reaching the critical state is expected to trigger a dynamic sliding of the rods out of each
other.

This study lays the foundation for a new framework in the mechanics of deployable structures, high-
lighting several promising directions for future development. These encompass frictional contact, spatial
configurations, sub-rods with nonzero intrinsic curvatures, buckling analysis, multi-stability, and dynamic
conditions.

CRediT authorship contribution statement. S. Neukirch: Formal analysis, Investigation, Methodology, Val-
idation, Writing - Original Draft, Writing - Review and Editing. F. Dal Corso: Formal analysis, Investiga-
tion, Methodology, Validation, Visualization, Writing - Original Draft, Writing - Review and Editing. Y.
Vetyukov: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualiza-
tion, Writing - Original Draft, Writing - Review and Editing.

Declaration of competing interest. The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work reported in this paper.

24



Acknowledgments. SN acknowledges funding from the Horizon Europe Framework Programme (Grant agree-
ment HORIZON-101205621), the french DIM MaTerRE (Grant INTIMAL), and the french IDEX Univ. of
Paris (Grant Emergence DynaVine). FDC acknowledges funding from the European Research Council
(ERC) under the European Union’s Horizon Europe research and innovation programme, Grant agreement
No. ERC-ADG-2021-101052956-BEYOND. The authors acknowledge TU Wien Bibliothek for financial
support through its Open Access Funding Programme.

Appendix A. Complementary expressions for Section 2.2

The strain energy computed from the internal moment M(s) reads

E(ℓ) = T 2
l

2a1a2(a1 + a2)

[
a22Z(L− ℓ, ℓ)− a21Z(L, ℓ) + a1(a1 + a2)Z(2L− ℓ, ℓ)

]
, (A.1)

with

Z(s, ℓ) = s+
Ry(ℓ)

Tl
s2 +

[
Ry(ℓ)

Tl

]2
s3

3
. (A.2)

The dimensionless parameter ρ is then obtained as

ρ =
1

6ra(1 + ra)(2− rℓ)3
{
r2a
[
10 + 10rT + 4r2T − 3rℓ(4 + 5rT + 3r2T )

]
+4 + 10rT + 10r2T − 3rℓ(3 + 5rT + 4r2T ) +

(
1 + rT + r2T

) [
ra(2− rℓ)

3 + r2ℓ (6− rℓ)(1 + r2a)
]}

,
(A.3)

where

ra =
a2
a1

, rℓ =
ℓ

L
, rT =

Tr

Tl
. (A.4)

Appendix B. Computing the internal axial and shear forces in each of the sub-rods along the
overlapping region

In Section 4, we have derived equations for the equilibrium shape (̊x, ẙ, θ̊, θ̊′) of the compound system
(consisting of the two rods) in the overlapping region. In addition to this shape, we would like to have

access to the internal forces N̊1(s) and N̊2(s) in each rod. In the overlapping region, the two rods are in
interaction, potentially with both distributed contact forces and moments, that is the equilibrium for their
internal forces and moments is given by system (75). Comparing (44)2 with (75)3 we see that due to the
possible presence of moment interaction, we cannot yet infer the value of N̊1n(s) and N̊2n(s). Indeed (75)
is a system of 6 scalar equations for 7 scalar unknowns N̊1n, N̊1t, f[12]n, f[12]t, m[12], N̊2n, N̊2t and is hence

underdetermined. Consequently, we set out to compute the internal axial force (N̊1t and N̊2t) in each rod
in order to reduce the number of unknowns to 5.

Appendix B.1. Inextensible limit of extensible sliding rods for deriving the internal axial forces N̊1t and N̊2t

The variational problem treated in Section 4 for inextensible rods is enhanced to take into account a
possible, although small, extensibility of the rod’s and sleeve’s axes. Assuming a linear constitutive relation
in the axial response through the axial elastic stiffness b (sometimes called EA in Strength of Materials
texts) and denoting the axial strain field with ϵ(s) > −1, the axial force component Nt(s) is given by

Nt(s) = b ϵ(s). (B.1)

Due to extensibility, the introduction of an additional curvilinear coordinate, σ ∈ [0, L], is instrumental
for describing the referential position along sub-rod 2, in addition to the curvilinear coordinate s ∈ [0, L]
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y

x
A : s = L− ℓ1, σ = 0

θ1(s), ϵ1(s)
θ̊1(s), ϵ̊1(s)

θ̊2(s), ϵ̊2(s)

B : s = L, σ = ℓ2

θ2(σ), ϵ2(σ)

O : s = 0 C : σ = L

Figure B.14: A configuration where both the inner rod and the flexible sleeve are extensible. The axial strains are noted ϵ1(s)
and ϵ2(σ). In the overlapping region, the deformed length of both rods is the same, but their referential lengths ℓ1 and ℓ2 are
different, see Eq. (B.4).

describing the referential position along the sub-rod 1. It follows that by defining ℓ1 and ℓ2 as the referential
overlapping length of each sub-rod, the interaction domains correspond to the subsets s ∈ [L − ℓ1, L] and
σ = [0, ℓ2]. Along these interaction domains, the deformed arclength is the same and hence the following
identity holds for two infinitesimal elements in frictionless contact

[1 + ϵ̊2(σ)] dσ = [1 + ϵ̊1(s)] ds, (B.2)

which is used to obtain the one-to-one integral relation between σ and s∫ σ

0

[1 + ϵ̊2(σ)] dσ =

∫ s

L−ℓ1

[1 + ϵ̊1(s)] ds, (B.3)

implying that, although constrained to have the same deformed length, the two interaction domains have
different referential lengths ℓ1 and ℓ2,

ℓ2 +

∫ ℓ2

0

ϵ̊2(σ) dσ = ℓ1 +

∫ L

L−ℓ1

ϵ̊1(s) ds. (B.4)

It is also interesting to observe that, if a reparametrization on s is performed for the axial strain in the
sub-rod 2, ε̊2(s) ≡ ϵ̊2(σ), the one-to-one mapping of s into σ can be described as

σ (s, ϵ̊1, ϵ̊2) =

∫ s

L−ℓ1

1 + ϵ̊1(s)

1 + ε̊2(s)
ds. (B.5)

The elastic energy E of the extensible and flexible sliding sleeve system can be evaluated as

E = E1 + E̊1 + E̊2 + E2, (B.6)

where the energy is split to consider the different contributions of the different sub-rods in the non-
overlapping and overlapping regions

E1 =
1

2

∫ L−ℓ1

0

[
a1 (θ′1(s))

2
+ b1 (ϵ1(s))

2
]
ds, (B.7a)

E̊1 =
1

2

∫ L

L−ℓ1

[
a1

(
θ̊′1(s)

)2
+ b1 (̊ϵ1(s))

2

]
ds, (B.7b)

E̊2 =
1

2

∫ ℓ2

0

[
a2

(
θ̊′2(σ)

)2
+ b2 (̊ϵ2(σ))

2

]
dσ, (B.7c)

E2 =
1

2

∫ L

ℓ2

[
a2 (θ′2(σ))

2
+ b2 (ϵ2(σ))

2
]
dσ, (B.7d)
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with the prime denoting differentiation with respect to the relevant space variable, s or σ.
The rotation {θ1(s), θ̊1(s), θ̊2(σ), θ2(σ)} and the strain {ϵ(s), ϵ̊1(s), ϵ̊2(σ), ϵ2(σ)} fields are subject to the

following constraints:

dA = θ1(s = L− ℓ1)− θ̊1(s = L− ℓ1) = 0, (B.8a)

dB = θ̊2(σ = ℓ2)− θ2(σ = ℓ2) = 0, (B.8b)

dC =

∫ L−ℓ1

0

(1 + ϵ1(s))t1(s) ds+

∫ L

L−ℓ1

(1 + ϵ̊1(s))̊t1(s) ds+

∫ L

ℓ2

(1 + ϵ2(σ))t2(σ) dσ − (2L− ℓ0)ex = 0,

(B.8c)

de = ℓ2 − ℓ1 +

∫ ℓ2

0

ϵ̊2(σ) dσ −
∫ L

L−ℓ1

ϵ̊1(s) ds = 0, (B.8d)

df (s) = θ̊1(s)− θ̊2 (σ (s, ϵ̊1, ϵ̊2)) = 0, s ∈ [L− ℓ1, L]. (B.8e)

Although the analytical derivation of the stationarity condition for the potential energy V can be ad-
dressed in the most general extensible case, for conciseness, this analysis is performed by considering only
the leading order terms in the axial strain (ϵ → 0) as it is assumed that the axial strain energy density is
much smaller than the bending energy density, namely

bϵ2 ≪ a (θ′)
2
.

Considering that the axial force component has the same magnitude as the bending moment divided by the
rod’s length,

b |ϵ| ∼ a |θ′|
L

,

the following inequality holds for the bending and axial stiffnesses

bL2

a
≫ 1, (B.9)

which in turn implies an inequality for the axial strain and the curvature

|ϵ| ≪ L |θ′| . (B.10)

Under the condition of small axial strains (|ε| ∼ |ϵ| ≪ 1), Eq. (B.2) can be used to obtain the linearized
expression of the undeformed infinitesimal length dσ as

dσ = [1 + ϵ̊1(s)− ε̊2(s)] ds, s ∈ [L− ℓ1, L], (B.11)

and consequently Eq. (B.5) can be simplified to

σ (s, ϵ̊1, ε̊2) = s− (L− ℓ1) +

∫ s

L−ℓ1

[̊ϵ1(s)− ε̊2(s)] ds, s ∈ [L− ℓ1, L], (B.12)

which allows us to rewrite de as

de = ℓ2 − ℓ1 −
∫ L

L−ℓ1

[̊ϵ1(s)− ε̊2(s)] ds = 0. (B.13)

By further introducing the reparametrization ϑ̊2(s) ≡ θ̊2(σ) and using the chain rule and Eq. (B.11), it is
found

θ̊′2(σ) =
d

dσ
θ̊2(σ) =

ds

dσ

d

ds
ϑ̊2(s) = [1− ϵ̊1(s) + ε̊2(s)] ϑ̊

′
2(s). (B.14)
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Consequently, the energy E̊2 of sub-rod 2 in the overlapping region, Eq. (B.7c), can be rewritten as

E̊2 =
1

2

∫ L

L−ℓ1

{
a2

(
ϑ̊′
2(s)

)2
[1− ϵ̊1(s) + ε̊2(s)] + b2 (̊ε2(s))

2
[1 + ϵ̊1(s)− ε̊2(s)]

}
ds, (B.15)

and, since Eq. (B.8e) implies θ̊1(s) = ϑ̊2(s) for s ∈ [L − ℓ1, L], the elastic energy in the overlapping region
can be simplified to

E̊1 + E̊2 =
1

2

∫ L

L−ℓ1

{(
θ̊′1(s)

)2
[a1 + a2 (1− ϵ̊1(s) + ε̊2(s))] + b1 (̊ϵ1(s))

2
+ b2 (̊ε2(s))

2

}
ds, (B.16)

where only the respective leading order terms in ϵ for the bending and axial energies are retained. With this
new expression Eq. (B.16), the stationarity condition for V = E −W can be evaluated under the constraints
(B.8a), (B.8c), (B.13), and with dB rewritten as

dB = θ̊1(s = L)− θ2(σ = ℓ2) = 0 . (B.17)

The stationarity of V is then performed by addressing the vanishing of the first variation of the Lagrangian
L given by

L
(
θ1(s), θ̊1(s), θ2(σ), ϵ1(s), ϵ̊1(s), ε̊2(s), ϵ2(σ), ℓ1, ℓ2

)
= V − µA dA − µB dB −R · dC − η de. (B.18)

The variational approach systematically performed on L leads to the full set of equilibrium equations
for the fields {θ1(s), θ̊1(s), θ2(σ), ϵ1(s), ϵ̊1(s), ε̊2(s), ϵ2(σ), ℓ1, ℓ2}. Under assumption (B.9), the equilibrium

equations obtained for {θ1(s), θ̊1(s), θ2(σ), ℓ1} differ only in the first order in the axial strain ϵ from the

equilibrium equations for {θ1(s), θ̊(s), θ2(s), ℓ} obtained under the inextensibility assumption in Section 4.
Therefore, the attention is restricted only to the variations in ϵ1(s), ϵ̊1(s), ε̊2(s), ϵ2(σ), and ℓ2 respectively
providing the relations of interest for the axial forces N1t, N̊1t, N̊2t, and N2t and the Lagrange multiplier
η. This is equivalent to writing the following Euler-Lagrange equations for ϵ1(s), ϵ̊1(s), ε̊2(s), and ϵ2(σ) and
the derivative in ℓ2:

b1 ϵ1(s)︸ ︷︷ ︸
N1t(s)

−R · t1(s) = 0, (B.19a)

− a2
2

(
θ̊′1(s)

)2
+ b1 ϵ̊1(s)︸ ︷︷ ︸

N̊1t(s)

−R · t̊1(s) + η = 0, (B.19b)

a2
2

(
θ̊′1(s)

)2
+ b2 ε̊2(s)︸ ︷︷ ︸

N̊2t(s)

−η = 0, (B.19c)

b2 ϵ2(σ)︸ ︷︷ ︸
N2t(σ)

−R · t2(σ) = 0, (B.19d)

− a2
2

(θ′2(ℓ2))
2
+R · t2(ℓ2) + µBθ

′
2(ℓ2)− η = 0, (B.19e)

where only the leading order terms in ϵ are retained. Eq. (B.19a) and Eq. (B.19d) are straightforward and
stand for the equilibrium condition along t in the two non-overlapping regions

N1t(s) = R · t1(s), N2t(σ) = R · t2(σ). (B.20)

Once the system of equations (B.19) is obtained for the extensible rod, the assumption (B.10) can be used
to express the constraints (B.13) and (B.8e) at the leading order, implying that

ℓ1 = ℓ2 = ℓ and θ̊1(s) = θ̊2(σ = s− L+ ℓ) = θ̊(s), s ∈ [L− ℓ, L]. (B.21)
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Moreover, at leading order in ϵ, the relation µB = a2 θ
′
2(ℓ2), see Eq. (47), can be used in Eq. (B.19e) to

obtain
η =

a2
2

(θ′2(ℓ2))
2
+R · t2(ℓ2), (B.22)

revealing that η coincides with the Hamiltonian H2, see Eq. (51)3, in the non-overlapping portion of sub-rod
2

η = H2. (B.23)

In turn, inserting this identity in Eq. (B.19b) and (B.19c) and using the frictionless sliding condition (53)
finally leads to the value of the internal axial force N̊jt(s) in the j-th sub-rod in the overlapping region

N̊jt(s) = Hj −
aj
2

(
θ̊′(s)

)2
, s ∈ [L− ℓ, L], j = 1, 2, (B.24)

which confirms through the variational approach the property that the Hamiltonian Hj along the j-th sub-
rod takes the same (constant) value in both the overlapping and the non-overlapping regions. This property
was also derived in Section 5.1 through the micromechanical approach, see Eq. (81).

It is further highlighted that, according to (27), the conservation of the Hamiltonian H̊j along the
overlapping portion of the j-th rod implies

f[ij]t(s) +m[ij](s)θ̊
′(s) = 0, s ∈ [L− ℓ, L], i, j = 1, 2, i ̸= j, (B.25)

which represents the localization of the null virtual work principle for the frictionless distributed contact
between curved rods and generalizes the analogous integral expression previously obtained for an inextensible
and unshearable rod within a frictionless rigid curved channel in Dal Corso et al. (2017).

The system is still underdetermined. Once the values H1 and H2 are computed from the solution of the
compound structure, the system of six equilibrium equations Eq. (75) complemented by Eq. (B.24) for j =
1, 2 appears as an overdetermined system of 8 equations for the 7 unknowns N̊1t(s), N̊1n(s), N̊2t(s), N̊2n(s),
f[12]t(s) = −f[21]t(s), f[12]n(s) = −f[21]n(s), and m[12](s) = −m[21](s). Nevertheless, the overdetermination
is only apparent due to the linear dependence of some equations with others in the system. Indeed, using
(75)3 and Eq. (B.24) to eliminate N̊1t(s), N̊1n(s), N̊2t(s), and N̊2n(s), the system can be reduced to the
following 4 equations for the 3 unknowns f[12]t(s), f[12]n(s), and m[12](s) aj θ̊

′′′(s) +m′
[ij](s) = f[ij]n(s) + θ̊′(s)

(
Hj −

aj
2

(
θ̊
′
(s)
)2)

,

f[ij]t +m[ij](s) θ̊
′(s) = 0,

s ∈ [L− ℓ, L], i, j = 1, 2, i ̸= j,

(B.26)
where the two equations in (B.26)2 are equivalent and yield f[12]t(s) once m[12](s) is known. Consequently,
the two equations (B.26)1 stands for the two remaining unknowns f[12]t(s) and m[12](s). However, these two
last equations are linearly dependent and only provide the derivative of (44)2 and the following relation

f[ij]n(s) = m′
[ij](s) +

ajHi − ai Hj

a1 + a2
θ̊′(s), s ∈ [L− ℓ, L], i, j = 1, 2, i ̸= j. (B.27)

As a consequence, the internal shear forces N̊1n(s) and N̊2n(s) can not be explicitly computed by only
considering the extensibility of the rods, unless the interaction moment m[ij](s) or the tangential component

f[ij]t(s) of the interaction force are given. To finally compute N̊1n(s) and N̊2n(s), the unshearable limit of
the shearable, flexible, but inextensible, rod and sleeve is addressed.

Appendix B.2. Unshearable limit of shearable sliding rods for finally deriving the internal shear forces N̊1n

and N̊2n

The variational problem treated in Section 4 is extended here for taking into account small shear effects.
Shearability induces a (small) tilt angle γ between the direction of the tangent t(s) and the cross-section
normal τ (s),

t(s) = x′(s) = cos [θ(s) + γ(s)] ex + sin [θ(s) + γ(s)] ey, τ (s) = cos θ(s) ex + sin θ(s) ey, (B.28)
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with the cross-section normal τ (s) orthogonal to the cross-section direction n(s), Eq. (18). The shear rigidity
is denoted as c (instead of the classical GA∗ used in Strength of Materials texts) and the shear strain as γ
(with |γ| ≪ 1), so the linear constitutive relation for the shear component Nn(s) = N(s) · n(s) is

Nn(s) = c γ(s). (B.29)

The elastic energy E of the shearable and flexible system can be evaluated through Eq. (B.6) by considering

E1 =
1

2

∫ L−ℓ

0

[
a1 (θ′1(s))

2
+ c1 (γ1(s))

2
]
ds, (B.30a)

E̊1 =
1

2

∫ L

L−ℓ

[
a1

(
θ̊′1(s)

)2
+ c1 (̊γ1(s))

2

]
ds, (B.30b)

E̊2 =
1

2

∫ L

L−ℓ

[
a2

(
θ̊′2(s)

)2
+ c2 (̊γ2(s))

2

]
ds, (B.30c)

E2 =
1

2

∫ 2L−ℓ

L

[
a2 (θ′2(s))

2
+ c2 (γ2(s))

2
]
ds. (B.30d)

In analogy with the inextensible limit of extensible rods treated in Appendix B.1, the unshearable limit of
shearable rods is considered under the assumptions cγ2 ≪ a (θ′)

2
and c |γ| ≈ a |θ′| /L, implying that

cL2

a
≫ 1, |γ| ≪ L |θ′| . (B.31)

Under these assumptions, at leading order most of the equations and Lagrange multipliers will be the same
as in Section 4, and the present approach focuses on the computation of the internal shear forces N̊n1(s)
and N̊n2(s) in the two rods in the overlapping region. The aim is to find the stationarity condition of the
total potential energy V = E −W under the following constraints:

dA = θ1(L− ℓ)− θ̊1(L− ℓ) = 0, (B.32a)

dB = θ̊2(L)− θ2(L) = 0, (B.32b)

dC =

∫ L−ℓ

0

t1(s) ds+

∫ L

L−ℓ

t̊1(s) ds+

∫ 2L−ℓ

L

t2(s) ds− (2L− ℓ0)ex = 0, (B.32c)

dg(s) = θ̊1(s) + γ̊1(s)− θ̊2(s)− γ̊2(s) = 0, s ∈ [L− ℓ, L], (B.32d)

where the last constraint dg(s) enforces that the two sub-rods have the same tangent along the overlapping
region, t̊1(s) = t̊2(s). In the limit where |γ| ≪ 1, the rod’s axis tangent t(s) is approximated by performing
a first order expansion of Eq. (B.28)

t(s) = [cos θ(s)− γ(s) sin θ(s)] ex + [sin θ(s) + γ(s) cos θ(s)] ey. (B.33)

The constraint dg(s), Eq. (B.32d), can be used in its differential form to eliminate θ̊2(s) from the energy E̊2
and reducing it to

E̊2 =
1

2

∫ L

L−ℓ

[
a2

(
θ̊′1(s) + γ̊′

1(s)− γ̊′
2(s)

)2
+ c2 (̊γ2(s))

2

]
ds. (B.34)

The equilibrium configuration for the shearable sliding sleeve can be found by imposing the vanishing of the
first variation of the following Lagrangian L

L
(
θ1(s), θ̊1(s), θ2(s), γ1(s), γ̊1(s), γ̊2(s), γ2(s), ℓ

)
= V − µA dA − µB dB −R · dC . (B.35)
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The variational approach, systematically performed on the Lagrangian L, Eq. (B.35), leads to the full

set of equilibrium equations for the fields {θ1(s), θ̊1(s), θ2(s), γ1(s), γ̊1(s), γ̊2(s), γ2(s), ℓ}. Under assumption

(B.31), the equilibrium equations obtained for {θ1(s), θ̊1(s), θ2(s), ℓ} differ only in the first order in the
shear strain γ from the corresponding equilibrium equations obtained under the unshearability assumption
in Section 4. Therefore, the attention is restricted only to the variations in γ1(s), γ̊1(s), γ̊2(s), γ2(s),
respectively providing the relations of interest for the internal shear forces N1n, N̊1n, N̊2n, and N2n. This
is equivalent to writing the following Euler-Lagrange equations for γ1(s), γ̊1(s), γ̊2(s), and γ2(s)

c1 γ1(s)︸ ︷︷ ︸
N1n(s)

= R · [− sin θ1(s) ex + cos θ1(s) ey] , (B.36a)

c1 γ̊1(s)︸ ︷︷ ︸
N̊1n(s)

= R ·
[
− sin θ̊1(s) ex + cos θ̊1(s) ey

]
+ a2θ̊

′′
1 (s), (B.36b)

c2 γ̊2(s)︸ ︷︷ ︸
N̊2n(s)

= −a2 θ̊
′′
1 (s), (B.36c)

c2 γ2(s)︸ ︷︷ ︸
N2n(s)

= R · [− sin θ2(s) ex + cos θ2(s) ey] , (B.36d)

where only the leading order terms in γ is retained. Eq. (B.36a) and Eq. (B.36d) are somehow straightforward
and stand for the equilibrium condition along n(s) in the two non-overlapping regions,

Njn(s) = R · nj(s), j = 1, 2. (B.37)

Once the system of equations (B.36) is obtained for the shearable rod, the assumption (B.31)2 can be used
to express the constraint (B.32d) at the leading order, implying that

θ̊1(s) = θ̊2(s) s ∈ [L− ℓ, L], (B.38)

and the comparison of (B.36c) with the equilibrium equation Eq. (75) for j = 2 implies that interaction
moment m[ij](s) vanishes,

m[ij](s) = 0, (B.39)

Then, by considering Eq. (B.36b), the distribution rule (78) of the shear force N̊jn(s) in the j-th sub-rod
follows. Applying this last equality to Eq. (B.27) implies Eq. (88), while applying it to Eq. (B.25) implies a
vanishing tangential component of the interaction force,

f[ij]t(s) = 0, s ∈ [L− ℓ, L], i, j = 1, 2 i ̸= j. (B.40)
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