
Meccanica
DOI 10.1007/s11012-013-9713-z

Residual stresses in random elastic composites: nonlocal
micromechanics-based models and first estimates
of the representative volume element size

Francesco Dal Corso · Luca Deseri

Received: 30 October 2012 / Accepted: 12 February 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Random elastic composites with residual
stresses are examined in this paper with the aim of un-
derstanding how the prestress may influence the over-
all mechanical properties of the composite. A fully
non-local effective response is found in perfect anal-
ogy with the un-prestressed case examined in (Dru-
gan and Willis, J. Mech. Phys. Solids 44(4):497–524,
1996). The second gradient approximation is consid-
ered and the impact of the residual stresses on the es-
timate of the RVE size is studied whenever the local
response is used to describe the mechanical proper-
ties of the heterogeneous medium. To this aim, total
and incremental formulations are worked out in this
paper and the influence of both uniform and spatially
varying prestresses are studied. Among other results,
it is shown how rapid oscillations of relatively “small”
residual stresses in most cases may result in the im-
possibility of describing the overall behavior of the
composite with a local constitutive equation. On the
other hand, prestresses with relatively high amplitudes
and slow spatial oscillations may even reduce the RVE
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size required for approximating the mechanical prop-
erties of un-prestressed heterogeneous media with a
local constitutive equation.

Keywords Prestressed random composites · Residual
stress · Micromechanics · Non-local elasticity · RVE
size

1 Introduction

The necessity of detecting residual stresses in compos-
ites is often a crucial issue in order to be able to pre-
vent undesired stress concentrations giving rise to lo-
cal damage, debonding, pull out, etc. Although non de-
structive experimental techniques already applicable
to detect residual stresses in metals, ceramics and other
materials may be useful for resolving such stresses in
composites, very little is known about their actual in-
fluence on the effective properties of the composite.
The interplay between the microstructure of heteroge-
neous materials and the presence of residual stresses
may be studied through a new field theory based on
the distinction between macro and sub-macroscopic
geometry through the approach developed in [8] and
extended in [9, 10], although a more direct approach
developed in [15] and extended in [13, 14, 20, 21] may
be generalized to prestressed random elastic compos-
ites. This paper devotes attention to this problem by fo-
cusing on composites formed by randomly distributed
‘small’ inclusions in a matrix; the theory is developed
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for any shape although the examples are worked out
for spherical inclusions or voids (see e.g. [25] for the
influence of shape particles in the absence of residual
stresses).

In the absence of residual stresses, micromechanics
based effective explicit nonlocal constitutive equations
have been obtained in [15] for the first time; there the
effective response of random composites is evaluated
starting from introducing a homogeneous comparison
solid, i.e. a constant fourth order tensor of elastic mod-
uli. Following [26], the stress generated by a compat-
ible strain field superimposed on this medium is con-
sidered as a benchmark and the difference between the
pointwise stress and such a benchmark is the polariza-
tion stress.

A probabilistic approach is then undertaken, where
a sample space is considered and, for the generic re-
alization of the composite a probability density is pre-
scribed. For each phase forming the composite a char-
acteristic function (also named indicator in the sequel)
is introduced to indicate the presence of a point in
a given phase for a given realization of the compos-
ite. This characteristic function is used (i) to approx-
imate the moduli for the given realization through an
ansatz where fourth order tensors of constant moduli
for each phase multiply their corresponding indicator
and (ii) to express the unknown polarization stresses
in each phase.

One point and two points probability functions are
then defined on the basis of the probability density
cited above; the former generates a way to obtain the
ensemble the average of such moduli and of the po-
larization, where the latter is carried over through the
analysis and appears in the ensemble average of the
Hashin and Strickman functional, governing the point-
wise polarization stresses. Stationarity of such effec-
tive functional together with the averaging of the su-
perimposed strain field obtained by solving the bal-
ance of linear momentum for the whole space lead
to an integral equation for the polarization stresses in
each phase in terms of the average of the superimposed
strain field. The closed form solution of such system
of equations in general is not possible and a space-
Fourier transform approach is undertaken to success-
fully characterize solutions.

Indeed, in [15] several key results have been ob-
tained, including a second strain gradient approxi-
mation of the integral response of the homogenized
material, with particular reference to statistically and

materially isotropic media. Among other results, the
important issue of estimating the deviation from the
second gradient effective response of the local term
alone has been raised and specialized to the case of
spherical inclusions. In particular, for a fixed devia-
tion from nonlocality, both extensions and shears have
been accounted for and estimates of the Representa-
tive Volume Element (RVE) size in both cases have
been achieved. This procedure has been extended in
the subsequent papers cited above, where also a fourth
order approximation to the fully nonlocal response has
been achieved. A recent paper [1] actually presents a
very robust computational method for generating unit
cells with randomly distributed inclusions consistent
with the concept of RVE introduced in [15] and gener-
alized in this paper in the presence of residual stresses.

Furthermore, the non-local effective model ob-
tained in this paper permits improvement in the anal-
ysis of strain localization recently performed in [2–6]
through introduction of size effect.

The key point of the method followed in the papers
mentioned above is to introduce a comparison solid
with constant elastic moduli which acts on the strain
tensor, compatible with an underlying displacement
field, and produces an idealized stress state. The dif-
ference between the pointwise stress and the latter is
the polarization stress which in this case is unique.

For the sake of simplicity, two-phase composites
are considered in the sequel although as in [15] the
procedure is valid in general.

The presence of residual stresses introduces a
source of non-uniqueness in the way in which the
comparison solid may be defined. The analysis in the
sequel shows that there are essentially four different
families of options, here labeled with the letters A1,
A2, A3 and B, suitable to formulate and solve the
problem of calculating the effective response of the
composite.

To begin with, as in the classical approach for non
prestressed composites, all such formulations are char-
acterized by introducing a compatible strain field gen-
erating a reference stress through a fourth order ten-
sor of constant elastic moduli. The compatibility of
such strain is essential in order to express the stress-
strain response in terms of the Green’s function for
the comparison medium defined on the whole three
dimensional space (see e.g. [26], Appendix and [27],
Sect. III.A.1, [15], Sect. 2).

An arbitrary reference state for the comparison
solid may also be conceived: this could for instance

Author's personal copy



Meccanica

coincide with (A1, Sect. 3.1) the actual residual stress,
(A2, Sect. 3.2) zero or (A3, Sect. 3.3) neither of the
above. A source of non uniqueness when choosing
such a solid then seems to arise, due to the fact that
the polarization stress needed to generate the whole
stress field may have to comply with either choice.
A Hashin and Strickman procedure analogous to that
used in [15], namely when residual stresses are ab-
sent, is pursued for each case and the final averaged
polarization stresses are obtained in Sect. 4. There it
is proved that such stress turns out to be the same for
each of the cases above and hence in this respect they
are equivalent; such “family” of choices for the com-
parison solid is then labeled A.

For two-phase composites, Sect. 4 shows that, in
general, formulation A does not yield a fully averaged
polarization stress, because the difference of the pre-
stresses in the two phases appears explicitly.

Furthermore, an incremental formulation (B,
Sect. 4), based on an objective measure of the stress in-
crement, is proposed. The resulting formulation loses
the self-adjointness typical of all the other ones. As
a result, a functional suitable to extract the approxi-
mations to the actual polarizations may formally be
constructed in the same form delivered by the first
variation of the Hashin and Strickman functional that
could have been considered if major symmetries of the
governing fourth order operator would occur.

Unlike formulation A, the system of integral equa-
tions for B has the advantage that the governing po-
larizations in each phase depend upon fully averaged
quantities, although a drawback of formulation B is
that only homogeneously prestressed media may be
treated with this approach.

2 Governing equations

It is known that the elastic behavior of a material when
a strain e(x) is superimposed on a pre-existing stress
state is defined by the following constitutive relation

σ (x) = L(x)e(x) + Σ(x), (1)

where

– σ (x) is the Cauchy stress;
– L(x) is the fourth-order elastic tensor (exhibiting

the minor and major symmetries, Lijkl = Ljikl =
Lklij );

– e(x) is the symmetric part of H(x), the gradient of
the superimposed displacement field u(x), i.e.

e(x) = sym
[
H(x)

]
, H(x) = ∇u (2)

– Σ(x) is a stress taking into account the effects given
by the presence of a pre-existing stress [16],

Σ(x) = t(x) + H(x)t(x) + t(x)HT (x) − [
tr H(x)

]
t(x)

︸ ︷︷ ︸
“geometrical terms”

+ D
[
t(x), e(x)

]
, (3)

where the superscript T denotes the transpose, t(x)

represents the pre-existing (Cauchy) stress, and D
is a sixth-order tensor such that

e1 · D
[
t(x), e2

] = e2 · D
[
t(x), e1

]

for any pair e1, e2 of second order symmetric ten-
sors (see [16, 22–24]); in other words the fourth
order tensor D[t(x), ·] resulting from the action of
D on the prestress t(x), besides the obvious minor
symmetries, it possesses the major ones too. Finally,
the infinitesimal rigid rotation tensor w(x) is given
by the decomposition rule

w(x) = H(x) − e(x) = skw
[
H(x)

]
. (4)

The linear constitutive relation (1) can be rewritten as

σ (x) = C
∗(x)H(x) + t(x), (5)

where1

C
∗(x) = L(x) + I � t(x) + (

t(x) � I
)
T

T − t(x) ⊗ I
︸ ︷︷ ︸

“geometrical terms”

+ D
[
t(x), ·], (6)

where T
T = ∑

ijkl δjkδilei ⊗ej ⊗ek ⊗el is the “trans-
poser” operator, namely the fourth order tensor allow-
ing for transposing any second order tensor. It is worth
noting the tensor C

∗(x) then exhibits left minor sym-
metries only, namely C

∗
ijkl = C

∗
jikl �= C

∗
ij lk .

Equation (6) demonstrates that the response can be
anisotropic due to the presence of non-zero prestress
t(x) even in the case of initially isotropic materials.

Balance equations may be written for the stresses
and the body forces in two possible ways.

1Here (A�B)U := AUBT , for any triple of second order tensors
A, B, U.
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– Total formulation. Considering the presence of
a body force vector f(x), the equilibrium of the
medium is expressed by

divσ (x) + f(x) = 0, (7)

from which the equilibrium condition for the body
when no superimposed displacement field is consid-
ered, u = 0, follows

div t(x) + f∗(x) = 0, (8)

where f∗(x) represents the pre-existing body force.
– Incremental formulation. An objective measure of

increment in the Cauchy stress may be introduced
by looking at the structure of the constitutive equa-
tion (5) and (3):

◦
σ (x) = σ (x) − t(x) − w(x)t(x) + t(x)w(x), (9)

which is insensitive to the rigid body rotations. For
this stress increment a linear constitutive relation
may be provided by replacing σ with (5) to get the
following expression:

◦
σ (x) = C(x)e(x), (10)

where

C(x) = L(x) + I � t(x) + t(x) � I − t(x) ⊗ I︸ ︷︷ ︸
“geometrical terms”

+ D
[
t(x), ·]. (11)

Unlike C
∗(x) introduced above, the tensor C(x)

exhibits both minor symmetries, namely Cijkl =
Cjikl = Cij lk , although major symmetries are still
not present;2 from now on this entity will be car-
ried over to represent the elastic constitutive infor-
mation, acting on the pure strain variable e(x), ac-
counting for the presence of prestress.

Considering relations (7)–(8), the equilibrium
condition can be obtained in terms of the stress in-
crement

◦
σ (x),

div
◦
σ (x) + ◦

f(x) = 0, (12)

where an objective measure of the increment in the

body force,
◦
f, has been introduced

2We note that C
∗(x)e(x) = C(x)e(x), since e(x) = sym[H(x)].

◦
f(x) = f(x) − f∗(x) + div

[
w(x)t(x) − t(x)w(x)

]
.

(13)

3 ‘Total’ formulations

The governing equations introduced in terms of the to-
tal quantities may allow for evaluating the effective re-
sponse for heterogeneous materials by following pro-
cedures analogous to the one introduced by Drugan
and Willis in [15]. There, a comparison solid with con-
stant moduli was introduced and considered to fill the
entire three dimensional space R

3 and a Hashin and
Shtrikman functional was singled out to find the effec-
tive response for an elastic random composite.

Then, the effective response is obtained by con-
sidering the entire space to be filled by a compar-
ison medium with (homogeneous) constitutive ten-
sor L0, on which loading is performed through the
body force f(x) and for which the solution of the
field equations (7), (1), with Σ(x) ≡ 0, is given by
{σ 0(x), e0(x),u0(x)}, where e0(x) := sym[∇u0(x)].

In the presence of residual stresses obviously
Σ(x) �= 0 and phases are described by the linearized
constitutive relation (1); the procedure highlighted
above may also apply, provided that the prestress will
be carried through the entire analysis. The introduced
multiple choices for the comparison medium, giving
rise to apparently different formulations, which will
be denoted by A1, A2 and A3. In spite of this possible
non-uniqueness, in the sequel it is shown that all three
approaches turn out to be equivalent.

3.1 Formulation A1

The linearized constitutive relation (1) can be rewritten
as follows:

σ (x) = L0e(x) + τ (x) + Σ(x), (14)

where τ (x) is the stress polarization field,

τ (x) = [
L(x) − L0

]
e(x). (15)

This choice entails having the entire residual stress ac-
tually present in the real material to prestress the cho-
sen comparison solid.
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By substituting the linearized constitutive equation
(14) into the balance of linear momentum (7) we ob-
tain the following expression:

div
[
L0e(x)

] + f(x) + div
[
τ (x) + Σ(x)

] = 0, (16)

whose solution for the superimposed deformation field
e(x) is given as follows:

e(x) = e0(x) −
∫

R3
Γ 0

(
x − x′)[τ

(
x′) + Σ

(
x′)]dx′,

(17)

after adapting [28], where

[
Γ 0

(
x − x′)]

ijkl
= ∂2[G0(x − x′)]jk

∂xi∂x′
l

∣∣∣∣
(ij),(kl)

. (18)

In Eq. (18), (ij ) and (kl) stand for symmetriza-
tion on these indexes and G0(x) is the infinite—
homogeneous—body Green’s function for the com-
parison material given as solution of

L0 ijkl

∂2[G0(x)]jm

∂xi∂xl

+ δkmδ(x) = 0, (19)

where δkm is the Kronecker delta and δ(x) is the three-
dimensional Dirac delta function. Equation (17) ex-
hibits a fully nonlocal character, which is encountered
in [15] for non-prestressed random elastic composites
and in [7] for thin films.

Using the definition (15) of the stress polarization
in Eq. (17), we obtain

e0(x) = [
L(x) − L0

]−1
τ (x)

+
∫

R3
Γ 0

(
x − x′)[τ

(
x′) + Σ

(
x′)]dx′, (20)

in which the stress polarization τ (x) is the stationary
value for the functional written below:

H
[
τ (x)

] =
∫

R3

{
τ (x) · [L(x) − L0

]−1
τ (x)

+ τ (x) ·
∫

R3
Γ 0

(
x − x′)τ

(
x′)dx′ − 2τ (x)

·
[

e0(x) −
∫

R3
Γ 0

(
x − x′)Σ

(
x′)dx′

]}
dx.

(21)

This formulation is used to characterize the effec-
tive response of random composites as in [15]. Related

issues arising in systems with uncertain parameters are
treated in [11, 12]. Considering a sample space S in
which α represents the individual member, the char-
acteristic function χr(x;α) defines the presence in the
point x of phase r for the realization α,

χr(x;α) =
{

1, if x ∈ phase r;
0, if x /∈ phase r.

(22)

Since the ensemble average 〈f (x)〉 of a function f (x)

is defined as

〈
f (x)

〉 ≡
∫

S
f (x;α)p(α)dα, (23)

where p(α) represents the probability density of the
realization α within the sample space S , it follows that
the (one-point) probability to have phase r at x is

Pr(x) = 〈
χr(x)

〉 ≡
∫

S
χr(x;α)p(α)dα, (24)

while the (two-point) probability to have phase r at x
and simultaneously phase s at x′ is

Prs

(
x,x′) = 〈

χr(x)χs

(
x′)〉

≡
∫

S
χr(x;α)χs

(
x′;α)

p(α)dα

= Prs

(
x − x′). (25)

Restricting attention to composite materials with
homogeneous phases (i.e. each phase r is character-
ized by constant Lr with r = 1, . . . , n), the fourth-
order elastic tensor L(x, α) and its ensemble average
are

L(x;α) =
n∑

r=1

Lrχr(x;α)

⇒ 〈
L(x)

〉 =
n∑

r=1

LrPr(x). (26)

The polarization stress field τ is chosen to have the
following form:

τ (x;α) =
n∑

r=1

τ r (x)χr(x;α), (27)

which, as discussed in [15], is the most general repre-
sentation for one-point and two-points probability cor-
relations in (21). This will provide an approximation
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for the stress polarization, in which the functions τ r (x)

will be determined in the sequel through a variational
argument based on the probabilistic version of (21).

In order to evaluate the ensemble average of the
probabilistic version of (21), unlike for the case of non
prestressed composites, the ansatz must be considered
also for the following fields

– the pre-existing Cauchy stress t,
– the gradient of superimposed displacement H;

from which the ansatz for the sixth-order tensor D fol-
lows. Henceforth, we have

t(x;α) =
n∑

r=1

tr (x)χr(x;α),

H(x;α) =
n∑

r=1

Hr (x)χr(x;α),

(28)

from which the symmetric and skew symmetric part of
H(x;α) follow:

e(x;α) =
n∑

r=1

er (x)χr(x;α),

w(x;α) =
n∑

r=1

wr (x)χr(x;α),

(29)

and hence the stress Σ(x), Eq. (3), for the realization
α follows

Σ(x;α) =
n∑

r=1

Σ r (x)χr(x;α). (30)

Restricting attention to statistically uniform com-
posites, the one-point Pr(x), Eq. (24), and two-point
Prs(x,x′), Eq. (25), probabilities are not affected by
translations and making the ergodic assumption we
have

Pr(x) = Pr = cr , Prs

(
x,x′) = Prs

(
x − x′), (31)

where cr is the volume concentration of the phase r .
Results on the autocorrelation function for polycrys-
tals may be found in [18], whereas for the case of non
overlapping spheres they may be found in [19].

Using Eqs. (28), (29), (30), (31) in the ensemble
average of the functional (21) yields
〈

H
[
τ (x)

]〉

=
n∑

r=1

cr

∫

R3
τ r (x) · {δL

−1
r τ r (x) − 2e0(x)

}
dx

+
n∑

r,s=1

∫

R3
τ r (x) ·

{∫

R3
Γ 0

(
x − x′)

× [
τ s

(
x′) + 2Σ s

(
x′)]Prs

(
x − x′)dx′

}
dx, (32)

which is stationary when (r = 1, . . . , n)

cre0(x) = crδL
−1
r τ r (x)

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)[τ s

(
x′) + Σ s

(
x′)]

× Prs

(
x − x′)dx′, (33)

where we set:

δLr = Lr − L0. (34)

Equations (28)–(29) may be substituted in the ex-
pression (17) in order to obtain e0, so that the ensemble
average of such field leads to the following expression
relating e0, the average strain 〈e〉 and the (unknown)
polarizations of each phase:

〈e〉(x) = e0(x) −
n∑

s=1

cs

∫

R3
Γ 0

(
x − x′)

× [
τ s

(
x′) + Σ s

(
x′)]dx′, (35)

which is used together with the stationarity condition
(33) to get the following system of integral equations
for τ r (x) (r = 1, . . . , n) in terms of es(x) and Σ s(x),

cr 〈e〉(x) = crδL
−1
r τ r (x)

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)[τ s

(
x′) + Σ s

(
x′)]

× [
Prs

(
x − x′) − crcs

]
dx′. (36)

Once the system of integral equations (36) is solved
for the unknowns τ r (x) (r = 1, . . . , n), the ensemble
averaged polarization can be obtained

〈τ 〉(x) =
n∑

r=1

crτ r (x), (37)

and it can be used in the ensemble average of the con-
stitutive equation (14),

〈σ 〉(x) = L0〈e〉(x) + 〈τ 〉(x) + 〈Σ〉(x). (38)
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3.2 Formulation A2

The constitutive relation (1) may be recast in such a
way a new choice of the polarization stress may con-
tain the entire residual stress, so that the comparison
medium remains completely un-prestressed. In this
case such equation may be written in the usual form

σ (x) = L0e(x) + p(x), (39)

where the polarization field p(x) has been introduced
such that

p(x) = [
L(x) − L0

]
e(x) + Σ(x) (40)

holds.
The fact that this polarization contains the prestress

changes the effective response in a nontrivial way, as
will be shown in the sequel. Furthermore, although the
choice just made is different from (14) made in the pre-
vious section for A1, the methodology carried through
this and the following section remains the same as the
one introduced before, actually based on [15].

Henceforth, by substituting the constitutive equa-
tion (39) in the balance of linear momentum (7) we
obtain the following expression:

div
[
L0e(x)

] + f(x) + div p(x) = 0, (41)

whose solution for the superimposed deformation field
e(x) is given as follows

e(x) = e0(x) −
∫

R3
Γ 0

(
x − x′)p

(
x′)dx′, (42)

again by adapting the argument given in the previous
section for Eq. (17).

Using the definition (40) of the stress polarization
in Eq. (42), we obtain

e0(x) = [
L(x) − L0

]−1[p(x) − Σ(x)
]

+
∫

R3
Γ 0

(
x − x′)p

(
x′)dx′, (43)

in which p(x) is the stationary value for the functional

H
[
p(x)

]

=
∫

R3

{
p(x) · [L(x) − L0

]−1p(x)

+ p(x) ·
∫

R3
Γ 0

(
x − x′)p

(
x′)dx′

− 2p(x) · [e0(x) + [
L(x) − L0

]−1
Σ(x)

]}
dx.

(44)

Using Eqs. (27), (31) and an ansatz for the polariza-
tion p, Eq. (40), analogous to that used in formulation
A1, Eq. (28), i.e.

p(x;α) =
n∑

r=1

pr (x)χr(x;α), (45)

the ensemble average of the functional (44) may be
expressed in the following form by

〈
H

[
p(x)

]〉

=
n∑

r=1

cr

∫

R3
pr (x)

× {
δL

−1
r

[
pr (x) − 2Σ r (x)

] − 2e0(x)
}

dx

+
n∑

r,s=1

∫

R3
pr (x)

×
{∫

R3
Γ 0

(
x − x′)ps

(
x′)Prs

(
x − x′)dx′

}
dx;

(46)

this turns out to be stationary whenever the following
relation holds (r = 1, . . . , n)

cre0(x) = crδL
−1
r

[
pr (x) − Σ r (x)

]

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)ps

(
x′)Prs

(
x − x′)dx′.

(47)

By using Eqs. (28), (29) in the ensemble averaging of
the superimposed deformation field (42) the following
relation between e0, the averaged strain and the (un-
known) polarizations of each phase results:

〈e〉(x) = e0(x)−
n∑

s=1

cs

∫

R3
Γ 0

(
x−x′)ps

(
x′)dx′. (48)

The latter equation together with the stationarity con-
dition (33) yield the following system of integral equa-
tions for pr (x) (r = 1, . . . , n) in terms of es(x), and
Σ s(x),
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cr 〈e〉(x) = crδL
−1
r

[
pr (x) − Σ r (x)

]

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)ps

(
x′)

× [
Prs

(
x − x′) − crcs

]
dx′. (49)

Once the system of integral equations (36) is solved
for the unknowns pr (x) (r = 1, . . . , n), the ensemble
average can be obtained

〈p〉(x) =
n∑

r=1

crpr (x), (50)

and it can be used in the ensemble average of the con-
stitutive equation (39),

〈σ 〉(x) = L0〈e〉(x) + 〈p〉(x). (51)

3.3 Formulation A3

As a third possibility, the comparison solid may be
chosen to be in an arbitrarily prestressed state which
then may not necessarily coincide with the corre-
sponding field existing in the actual material. Al-
though this may seem a bit artificial, the related av-
eraged response of the composite obtained in this way
will show that this approach is actually equivalent to
the previous two.

In this case, the constitutive relation (1) may be
rewritten as

σ (x) = L0e(x) + Σ0(x) + q(x), (52)

where the stress polarization field q(x) and a compar-
ison pre-existing stress Σ0 have been introduced,

q(x) = [
L(x) − L0

]
e(x) + Σ(x) − Σ0(x). (53)

In this case the polarization contains the difference of
the prestress in the two phases.

Using the linearized constitutive equation (52) in
the equilibrium equation (7) yields

div
[
L0e(x)

] + f(x) + divΣ0(x) + div q(x) = 0, (54)

whose solution for the superimposed deformation field
e(x) is given as follows

e(x) = e0(x) −
∫

R3
Γ 0

(
x − x′)[Σ0

(
x′) + q

(
x′)]dx′.

(55)

Using the definition (53) of the stress polarization
in Eq. (55), we obtain

e0(x) = [
L(x) − L0

]−1[q(x) + Σ0(x) − Σ(x)
]

+
∫

R3
Γ 0

(
x − x′)[Σ0

(
x′) + q

(
x′)]dx′, (56)

in which the stress polarization q(x) is the stationary
value for the functional

H
[
q(x)

]

=
∫

R3

{
q(x) · [L(x) − L0

]−1q(x)

+ q(x) ·
∫

R3
Γ 0

(
x − x′)[2Σ0

(
x′) + q

(
x′)]dx′

− 2q(x) · [e0(x) + [
L(x) − L0

]−1

× [
Σ(x) − Σ0(x)

]]}
dx. (57)

Using Eqs. (28), (31) and the following ansatz for
the polarization stress field,

q(x;α) =
n∑

r=1

qr (x)χr(x;α), (58)

the ensemble average of the functional (57) is ex-
pressed by

〈
H

[
q(x)

]〉

=
n∑

r=1

cr

∫

R3
qr (x) ·

{
δL

−1
r

[
qr (x) + 2Σ0(x)

− 2Σ r (x)
] − 2e0(x)

+ 2
∫

R3
Γ 0

(
x − x′)Σ0

(
x′)dx′

}
dx

+
n∑

r,s=1

∫

R3
qr (x)

×
{∫

R3
Γ 0

(
x − x′)qs

(
x′)Prs

(
x − x′)dx′

}
dx,

(59)

which is stationary when (r = 1, . . . , n)

cre0(x) = cr

{
δL

−1
r

[
qr (x) + Σ0(x) − Σr (x)

]
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+
∫

R3
Γ 0

(
x − x′)Σ0

(
x′)dx′

}

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)qs

(
x′)Prs

(
x − x′)dx′.

(60)

Making use of Eqs. (28), (29) in the ensemble av-
eraging of the superimposed deformation field (55), a
relationship among e0, the average strain field 〈e〉(x)

and the (unknown) polarizations qr (x), (r = 1, . . . , n),
is obtained:

〈e〉(x) = e0(x) −
n∑

s=1

cs

∫

R3
Γ 0

(
x − x′)qs

(
x′)dx′

−
∫

R3
Γ 0

(
x − x′)Σ0

(
x′)dx′. (61)

This relation is used together with the stationarity
condition (60) to get the following system of integral
equations for qr (x) (r = 1, . . . , n) in terms of es(x)

and Σ s(x),

cr 〈e〉(x) = crδL
−1
r

[
qr (x) + Σ0(x) − Σ r (x)

]

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)qs

(
x′)

× [
Prs

(
x − x′) − crcs

]
dx′. (62)

Once the system of integral equations (62) is solved
for the unknowns qr (x) (r = 1, . . . , n), the ensemble
average can be obtained

〈q〉(x) =
n∑

r=1

crqr (x), (63)

and it can be used in the ensemble average of the lin-
earized constitutive equation (52),

〈σ 〉(x) = L0〈e〉(x) + Σ0(x) + 〈q〉(x). (64)

4 Incremental approach: formulation B

A comparison solid may be introduced for the com-
posite by looking at the incremental formulation stated
in Sect. 2. In particular, relation (10) may be rewritten
as follows

◦
σ (x) = L0e(x) + ρ(x), (65)

where the stress polarization field ρ(x) has been intro-
duced.

Although C(x), Eq. (11), has minor symmetries
only, we recall that the comparison medium is here
defined by a constant tensor L0 exhibiting major and
both minor symmetries.

From comparison of Eq. (65) with Eq. (10), the po-
larization field follows

ρ(x) = [
C(x) − L0

]
e(x). (66)

Using the incremental linearized constitutive relation
(65) in the balance of linear momentum (7) we obtain
the following equation:

div
[
L0e(x)

] + ◦
f(x) + divρ(x) = 0. (67)

By adapting the argument given in Sect. 2 for (17) we
have that the solution of (67) for the superimposed de-
formation field e(x) may be expressed as follows:

e(x) = e0(x) −
∫

R3
Γ 0

(
x − x′)ρ

(
x′)dx′. (68)

Using the definition (66) of the stress polarization in
Eq. (68), we obtain

e0(x) = [
C(x) − L0

]−1
ρ(x)

+
∫

R3
Γ 0

(
x − x′)ρ

(
x′)dx′, (69)

which, unlike Eqs. (20), (43), (56), is characterized
by the non-self adjoint operator [C(x) − L0]−1. For
this reason a Hashin and Shtrikman functional for
which (69) represents its stationary point cannot be
constructed. Nevertheless, a weak form of such inte-
gral equation may be considered by introducing a field
of ‘virtual’ polarizations ρ∗(x) and by defining a new
functional K[ρ(x);ρ∗(x)] in the following form:

K
[
ρ(x);ρ∗(x)

]

=
∫

R3

{
ρ∗(x) · [C(x) − L0

]−1
ρ(x) + ρ∗(x)

×
∫

R3
Γ 0

(
x − x′)ρ

(
x′)dx′ − ρ∗(x) · e0(x)

}
dx;

(70)

whenever such functional achieves value equal to zero
for arbitrary choices of the test field ρ∗(x) Eq. (69) is
in fact recovered.
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Restricting attention to composite materials with
homogeneous phases uniformly prestressed3 (i.e. each
phase r is characterized by constant Cr with r =
1, . . . , n), the fourth-order elastic tensor C(x, α) and
its ensemble average are

C(x;α) =
n∑

r=1

Crχr(x;α)

⇒ 〈
C(x)

〉 =
n∑

r=1

CrPr(x), (71)

and using Eqs. (28), (31) and the following ansatz for
the polarization stress and its test counterpart,

ρ(x;α) =
n∑

r=1

ρr (x)χr(x;α),

ρ∗(x;α) =
n∑

r=1

ρ∗
r (x)χr(x;α),

(72)

the ensemble average of the functional (70) is ex-
pressed by the following relation:

〈
K

[
ρ(x);ρ∗(x)

]〉

=
n∑

r=1

cr

∫

R3
ρ∗

r (x)
{
δC

−1
r ρr (x) − e0(x)

}
dx

+
n∑

r,s=1

∫

R3
ρ∗

r (x)

×
{∫

R3
Γ 0

(
x − x′)ρs

(
x′)Prs

(
x − x′)dx′

}
dx,

(73)

which is zero for any arbitrary field ρ∗
r (x) (r =

1, . . . , n) if and only if the following system of integral
equations holds:

cre0(x) = crδC
−1
r ρr (x)

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)ρs

(
x′)Prs

(
x − x′)dx′.

(74)

3The further hypothesis of constant eigenstress tr within each
phase r is fundamental in solving the integral equation for the
polarization stress ρ through Fourier transforming.

Using Eqs. (71) and (72) in (68) and taking the en-
semble average of the superimposed deformation field
we get:

〈e〉(x) = e0(x)−
n∑

s=1

cs

∫

R3
Γ 0

(
x−x′)ρs

(
x′)dx′, (75)

which is used together with (74) to get the following
system of integral equations for ρr (x) (r = 1, . . . , n):

cr 〈e〉(x) = crδC
−1
r ρr (x)

+
n∑

s=1

∫

R3
Γ 0

(
x − x′)ρs

(
x′)

× [
Prs

(
x − x′) − crcs

]
dx′. (76)

Once the system of integral equations (76) is solved
for the unknowns ρr (x) (r = 1, . . . , n), the ensemble
average

〈ρ〉(x) =
n∑

r=1

crρr (x) (77)

can be obtained and it can ultimately be used to com-
pute the following expression:

〈 ◦
σ 〉(x) = L0〈e〉(x) + 〈ρ〉(x), (78)

namely the average of the incremental constitutive re-
lation (65).

5 Effective non-local constitutive equations

From the previous sections we may notice that the dif-
ferent choices of polarizations τ (x), p(x), q(x) and
ρ(x) are related to one another. This is summarized
in the following list of equations:

p(x) = q(x) + Σ0(x) = τ (x) + Σ(x)

= ρ(x) + t(x) + w(x)t(x) − t(x)w(x). (79)

In the sequel, attention will be focused on two-
phase composites in order to evaluate their effective
response according to the three total formulations (A1,
A2, A3) and the incremental approach (B) previously
introduced.
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5.1 Two-phase composites

Restricting now, for simplicity, attention to the case of
two-phase composites, we have that

Prs

(
x − x′) − crcs = cr(δrs − cs)h

(
x − x′) no sum,

(80)

where h(x − x′) is the two-point correlation func-
tion [28], the integral equations systems (36), (49),
(62), (76) can be rewritten respectively as follows
(r = 1,2):

(A1)

cr 〈e〉(x) = crδL
−1
r τ r (x) + cr

2∑

s=1

(δrs − cs)

×
∫

R3
Υ 0

(
x − x′)[τ s

(
x′) + Σs

(
x′)]dx′,

(A2)

cr 〈e〉(x) = crδL
−1
r

[
pr (x) − Σ r (x)

]

+ cr

2∑

s=1

(δrs − cs)

×
∫

R3
Υ 0

(
x − x′)ps

(
x′)dx′,

(A3)

cr 〈e〉(x) = crδL
−1
r

[
qr (x) + Σ0(x) − Σ r (x)

]

+ cr

2∑

s=1

(δrs − cs)

×
∫

R3
Υ 0

(
x − x′)qs

(
x′)dx′,

(B)

cr 〈e〉(x) = crδC
−1
r ρr (x) + cr

2∑

s=1

(δrs − cs)

×
∫

R3
Υ 0

(
x − x′)ρs

(
x′)dx′,

(81)

after setting

Υ 0(x) = Γ 0(x)h(x). (82)

Fourier transforms of the previous equations are con-
sidered in the sequel. To this end, the following form
of the three-dimensional Fourier transform f̃ (ξ) of
any function f (x) and its inverse are defined as fol-
lows:

f̃ (ξ) =
∫

R3
f (x)eıξ ·x dx,

f (x) = 1

8π3

∫

R3
f̃ (ξ)e−ıξ ·x dξ ,

(83)

where ı is the imaginary unit, ξ is the position in the
transformed space and · represents the scalar product
between vectors.

Computing such transform for (81) leads to the fol-
lowing expressions (r = 1,2):

(A1)

cr 〈̃e〉(ξ) = crδL
−1
r τ̃ r (ξ)

+ cr Υ̃ 0(ξ)

2∑

s=1

(δrs − cs)
[
τ̃ s(ξ) + Σ̃ s(ξ)

]
,

(A2)

cr 〈̃e〉(ξ) = crδL
−1
r

[
p̃r (ξ) − Σ̃ r (ξ)

]

+ cr Υ̃ 0(ξ)

2∑

s=1

(δrs − cs )̃ps(ξ),

(A3)

cr 〈̃e〉(ξ) = crδL
−1
r

[
q̃r (ξ) + Σ̃0(ξ ) − Σ̃ r (ξ)

]

+ cr Υ̃ 0(ξ)

2∑

s=1

(δrs − cs )̃qs(ξ),

(B)

cr 〈̃e〉(ξ) = crδC
−1
r ρ̃r (ξ)

+ cr Υ̃ 0(ξ)

2∑

s=1

(δrs − cs )̃ρs(ξ ),

(84)

where

Υ̃ 0(ξ) = (Γ̃ 0 ∗ h̃)(ξ ) = 1

8π3

∫

R3
Γ̃ 0

(
ξ − ξ ′)̃h

(
ξ ′)dξ ′.

(85)

Upon introducing the ‘stiffness-like’ operators

T̃rs(ξ ) = δLrK̃(ξ)H̃rs(ξ),

T̃
∗
rs(ξ ) = δCrK̃

∗(ξ )H̃∗
rs(ξ),

(86)

where

K̃(ξ) = [
Υ̃

−1
0 (ξ) + c1δL2 + (1 − c1)δL1

]−1
,

H̃rs(ξ) = δrs

cs

Υ̃
−1
0 (ξ) + δL1 + δL2 − δLr ,

K̃
∗(ξ) = [

Υ̃
−1
0 (ξ) + c1δC2 + (1 − c1)δC1

]−1
,

H̃
∗
rs(ξ) = δrs

cs

Υ̃
−1
0 (ξ) + δC1 + δC2 − δCr ,

(87)
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and their inverse

T̃
−1
rs (ξ) = crδL

−1
r δrs + cr(δrs − cs)Υ̃ 0(ξ),

(
T̃

∗
rs

)−1
(ξ ) = crδC

−1
r δrs + cr(δrs − cs)Υ̃ 0(ξ ),

(88)

the systems (81) take the form (r = 1,2)

(A1)

2∑

s=1

T̃
−1
rs (ξ )̃τ s(ξ)

= cr 〈̃e〉(ξ) − cr Υ̃ 0(ξ )

2∑

z=1

(δrz − cz)Σ̃z(ξ),

(A2)

2∑

s=1

T̃
−1
rs (ξ )̃ps(ξ) = cr 〈̃e〉(ξ) + crδL

−1
r Σ̃ r (ξ),

(A3)

2∑

s=1

T̃
−1
rs (ξ )̃qs(ξ)

= cr 〈̃e〉(ξ) + crδL
−1
r

[
Σ̃ r (ξ) − Σ̃0(ξ)

]
,

(B)

2∑

s=1

(
T̃

∗
rs

)−1
(ξ )̃ρs(ξ) = cr 〈̃e〉(ξ).

(89)

Solutions for such systems of equations may be
easily provided as follows (r = 1,2):

(A1)

τ̃ r (ξ) =
2∑

s=1

csT̃rs(ξ)〈̃e〉(ξ)

−
2∑

s,z=1

csT̃rs(ξ)Υ̃ 0(ξ)(δsz − cz)Σ̃z(ξ),

(A2)

p̃r (ξ) =
2∑

s=1

csT̃rs(ξ)〈̃e〉(ξ)

+
2∑

s=1

csT̃rs(ξ)δL
−1
s Σ̃ s(ξ),

(A3)

q̃r (ξ) =
2∑

s=1

csT̃rs(ξ)〈 ẽ 〉(ξ )

+
2∑

s=1

csT̃rs(ξ)δL
−1
s

[
Σ̃ s(ξ) − Σ̃0(ξ)

]
,

(B)

ρ̃r (ξ) =
2∑

s=1

csT̃
∗
rs(ξ)〈̃e〉(ξ).

(90)

Finally, from the Fourier transform of the stress po-
larization fields (90) we are able to obtain their ensem-

ble averages through the Fourier Transform of Eqs.
(37), (50), (63), (77), i.e.

(A1)

〈̃τ 〉(ξ) =
2∑

r,s=1

crcsT̃rs(ξ)〈 ẽ 〉(ξ)

−
2∑

r,s,z=1

crcsT̃rs(ξ)Υ̃ 0(ξ)(δsz − cz)Σ̃z(ξ ),

(A2)

〈̃p〉(ξ ) =
2∑

r,s=1

crcsT̃rs(ξ)〈 ẽ 〉(ξ)

+
2∑

r,s=1

crcsT̃rs(ξ)δL
−1
s Σ̃ s(ξ),

(A3)

〈̃q〉(ξ ) =
2∑

r,s=1

crcsT̃rs(ξ)〈 ẽ 〉(ξ)

+
2∑

r,s=1

crcsT̃rs(ξ)δL
−1
s

[
Σ̃ s(ξ) − Σ̃0(ξ)

]
,

(B)

〈̃ρ〉(ξ) =
2∑

r,s=1

crcsT̃
∗
rs(ξ)〈 ẽ 〉(ξ).

(91)

Upon evaluating the ensemble averages of the
‘stiffness-like’ operators

〈T̃〉(ξ) =
2∑

r,s=1

crcsT̃rs(ξ),

〈
T̃

∗〉(ξ ) =
2∑

r,s=1

crcsT̃
∗
rs(ξ),

(92)

evaluating the dimensionless tensor:

S̃(ξ) = c1(1 − c1)(L1 − L2)K̃(ξ), (93)

and the stress-like variables

Σ̃1(ξ) = L1L
−1
0 Σ1(ξ),

Σ̃2(ξ) = L2L
−1
0 Σ2(ξ),

(94)

Eqs. (91) can be rewritten as follows:

(A1)

〈̃τ 〉(ξ) = 〈T̃〉(ξ)〈 ẽ 〉(ξ) − S̃(ξ)
[
Σ̃1(ξ) − Σ̃2(ξ)

]
,
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(A2)

〈̃p〉(ξ ) = 〈T̃〉(ξ )〈̃e〉(ξ) + 〈Σ̃〉(ξ)

− S̃(ξ )
[
Σ̃1(ξ) − Σ̃2(ξ)

]
,

(A3)

〈̃q〉(ξ ) = 〈T̃〉(ξ )〈 ẽ 〉(ξ) + 〈Σ̃〉(ξ ) − Σ̃0(ξ)

− S̃(ξ )
[
Σ̃1(ξ) − Σ̃2(ξ)

]
,

(B)

〈̃ρ〉(ξ ) = 〈
T̃

∗〉(ξ)〈 ẽ 〉(ξ ).

(95)

After simple manipulations, we conclude that the ef-
fective constitutive models arising from the three total
formulations, Eqs. (38), (51), (64), are actually equiv-
alent, i.e.

(A1) ≡ (A2) ≡ (A3).

This important point means that the result is not af-
fected by the choices of comparison solids considered
before, in other words by letting:

– the residual stress in the real material to prestress
the comparison solid, so the polarization does not
contain any residual stress field;

– the comparison medium to be completely un-pre-
stressed, so that the corresponding polarization con-
tains the whole residual stress;

– the comparison solid to undergo an arbitrary pre-
stress, which may not necessarily coincide with
the residual stress existing in the heterogeneous
medium, so that the corresponding polarization con-
tains the difference between the real and the arbi-
trary prestress;

lead to the same result.
In the sequel we then shall refer to these three for-

mulations with the label A.
Inverse Fourier transforms of (95), and the convo-

lution theorem, may be considered in order to evaluate
the spatial distributions of the stress polarizations as-
sociated with the remaining two formulations A and
B, i.e.:

(A)

〈τ 〉(x) =
∫

R3

{〈T〉(x − x′)〈e〉(x′)

− S
(
x − x′)[Σ1

(
x′) − Σ2

(
x′)]}dx′,

(B)

〈ρ〉(x) =
∫

R3

〈
T

∗〉(x − x′)〈e〉(x′)dx′.

(96)

Approximating 〈e〉(x′) and Σk(x′) (k = 1,2) by
the first three-terms of their Taylor expansions in the
neighborhood of the position x may be considered as
follows:

〈e〉(x′)  〈e〉(x) + (
x′ − x

)∇〈e〉(x)

+ 1

2

(
x′ − x

)(
x′ − x

)∇∇〈e〉(x),

Σk

(
x′)  Σk(x) + (

x′ − x
)∇Σk(x)

+ 1

2

(
x′ − x

)(
x′ − x

)∇∇Σk(x),

(97)

so that polarization fields (96) admit the following
forms:

(A)

〈τ 〉(x) 
[∫

R3
〈T〉(x − x′)dx′

]
〈e〉(x)

+
[∫

R3
〈T〉(x − x′)(x′ − x

)
dx′

]
∇〈e〉(x)

+ 1

2

[∫

R3
〈T〉(x − x′)(x′ − x

)(
x′ − x

)
dx′

]

× ∇∇〈e〉(x)

−
[∫

R3
S
(
x − x′)dx′

][
Σ1(x) − Σ2(x)

]

−
[∫

R3
S
(
x − x′)(x′ − x

)
dx′

]
∇

× [
Σ1(x) − Σ2(x)

]

− 1

2

[∫

R3
S
(
x − x′)(x′ − x

)(
x′ − x

)
dx′

]

× ∇∇[
Σ1(x) − Σ2(x)

]
,

(B)

〈ρ〉(x) 
[∫

R3

〈
T

∗〉(x − x′)dx′
]
〈e〉(x)

+
[∫

R3

〈
T

∗〉(x − x′)(x′ − x
)

dx′
]
∇〈e〉(x)

+ 1

2

[∫

R3

〈
T

∗〉(x − x′)(x′ − x
)(

x′ − x
)

dx′
]

× ∇∇〈e〉(x).

(98)

As observed in [15], convolution integrals in the
whole space and their first moments can be simplified
by making use of the following identities:

Author's personal copy



Meccanica

∫

R3
f

(
x − x′)dx′ = f̃ (ξ = 0),

∫

R3
f

(
x − x′)(x′ − x

)
dx′ = ı∇ξ f̃ (ξ = 0),

∫

R3
f

(
x − x′)(x′ − x

)(
x′ − x

)
dx′ = −∇ξ∇ξ f̃ (ξ = 0).

(99)

5.2 Local response to homogeneous prestress and
superimposed strain fields

If the prestress and superimposed strain are constant
fields, the composite obviously responds with local
terms only, namely:

(A) 〈σ 〉 = [
L0 + 〈T̃〉(0)

]〈e〉
+ 〈Σ〉 − S̃(0)(Σ1 − Σ2),

(B) 〈 ◦
σ 〉 = [

L0 + 〈
T̃

∗〉(0)
]〈e〉.

(100)

This situation is of great interest since it allows
for highlighting the local part of the overall response
of the composite and, as in [15], may be utilized as
a benchmark against approximate expressions entail-
ing second gradient terms for the effective constitutive
equation of the composite when spatially nonconstant
fields are considered.

5.3 Isotropic phase distribution

Isotropic distributions of the phases, possible anisotropic
in terms of their constitutive behavior, are considered
in the sequel. Under this restriction, it is known from
[15] that the two-point correlation function h(x) satis-
fies

h(x) = h
(|x|) ⇒ h̃(ξ) = h̃

(|ξ |). (101)

Through this property, Drugan and Willis in [15]
have shown that

Υ̃ 0(0) = 1

4π

∫

|ξ |=1
Γ̃ 0(ξ)dS,

∂Υ̃ 0

∂ξm

(0) = 0,

∂2Υ̃ 0

∂ξm∂ξn

(0) = 1

4π

∫

|ξ |=1
(3ξmξn − δmn)Γ̃ 0(ξ)dS

×
∫ ∞

0
h(r)r dr,

(102)

and therefore,

〈T̃〉,m(0) = 〈
T̃

∗〉
,m

(0) = S̃,m(0) = 0,

〈T̃〉,mn(0) = −c1(1 − c1)(δL1 − δL2),

K̃(0)Υ̃
−1
0 (0)Υ̃ 0,mn(0)Υ̃

−1
0 (0)K̃(0)(δL1 − δL2),

〈
T̃

∗〉
,mn

(0) = −c1(1 − c1)(δC1 − δC2),

K̃
∗(0)Υ̃

−1
0 (0)Υ̃ 0,mn(0)Υ̃

−1
0 (0)K̃∗(0)(δC1 − δC2),

S̃,mn(0) = −〈T̃〉,mn(0)(δL1 − δL2)
−1.

(103)

Because the quantities 〈T̃〉,m(0), 〈T̃∗〉,m(0) and
S̃,m(0) vanish, the approximation for the polarization
stress (98) simplifies as

(A)

〈τ 〉(x)  〈T̃〉(0)〈e〉(x) − 1

2
∇ξ∇ξ 〈T̃〉(0)∇∇〈e〉(x)

− S̃(0)
[
Σ1(x) − Σ2(x)

]

+ 1

2
∇ξ∇ξ S̃(0)∇∇[

Σ1(x) − Σ2(x)
]
,

(B)

〈ρ〉(x)  〈
T̃

∗〉(0)〈e〉(x) − 1

2
∇ξ∇ξ

〈
T̃

∗〉(0)∇∇〈e〉(x),

(104)

so that the effective responses (38) and (78) turn out to
be approximated by the following expressions:

(A)

〈σ 〉(x)  [
L0 + 〈T̃〉(0)

]〈e〉(x)

− 1

2
∇ξ∇ξ 〈T̃〉(0)∇∇〈e〉(x)

+ 〈Σ〉(x) − S̃(0)
[
Σ1(x) − Σ2(x)

]

+ 1

2
∇ξ∇ξ S̃(0)∇∇[

Σ1(x) − Σ2(x)
]
,

(B)

〈 ◦
σ 〉(x)  [

L0 + 〈
T̃

∗〉(0)
]〈e〉(x)

− 1

2
∇ξ∇ξ

〈
T̃

∗〉(0)∇∇〈e〉(x).

(105)

The comparison medium is chosen as usual to be
coincident with the matrix in which the random inclu-
sions are contained, namely

L0 = L2. (106)

It follows that the dimensionless tensor S̃(0) appearing
in Eq. (93) can be related to 〈T̃〉(0) in a simple way

S̃(0) = c1̃I − 〈T̃〉(0)(L1 − L2)
−1, (107)
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so that its second derivative simplifies as follows

S̃,mn(0) = −〈T̃〉,mn(0)(L1 − L2)
−1. (108)

Taking into account all the simplified expressions
above, the non-local constitutive equations (105) may
be rewritten in the forms:

(A)

〈σ 〉(x)  [
L0 + 〈T̃〉(0)

]〈e〉(x) + Σ2(x)

+ 〈T̃〉(0)(L1 − L2)
−1[Σ1(x) − Σ2(x)

]

− 1

2
∇ξ∇ξ 〈T̃〉(0)

{∇∇〈e〉(x)

+ (L1 − L2)
−1∇∇[

Σ1(x) − Σ2(x)
]}

,

(B)

〈 ◦
σ 〉(x)  [

L0 + 〈
T̃

∗〉(0)
]〈e〉(x)

− 1

2
∇ξ∇ξ

〈
T̃

∗〉(0)∇∇〈e〉(x).

(109)

Equations (109) yield both the total and the incre-
mental forms of the non-local constitutive relations for
a two-phase composite with isotropic phase distribu-
tions in the presence of a pre-existing stress state.

In analogy with [15], from such relations we note
that while there is the dependence on the average of the
superimposed strain 〈e〉(x) and its second derivative
for both the total and the incremental approach, the
dependence on the prestress in the total formulation is
given in terms of the difference Σ1(x)−Σ2(x) and its
second derivative.

5.4 Isotropic phases

In the sequel we particularize the obtained results to
composites containing isotropic phases, i.e.

L1 ijkl =
(

κ1 − 2

3
μ1

)
δij δkl + μ1(δikδjl + δilδjk),

L2 ijkl =
(

κ2 − 2

3
μ2

)
δij δkl + μ2(δikδjl + δilδjk).

(110)

In this case, the components of 〈T̃〉(0) and its second
gradient are the following (see [15]):

〈T̃〉ijkl(0)

= c1(κ1 − κ2)(3κ2 + 4μ2)

3κ1 + 4μ2 − 3c1(κ1 − κ2)
δij δkl

+ 5c1μ2(μ1 − μ2)(3κ2 + 4μ2)(δikδj l + δilδjk)

5μ2(3κ2 + 4μ2) + 6(1 − c)(μ1 − μ2)(κ2 + 2μ2)
,

〈T̃〉ijkl,mn(0)

= −c1(1 − c1)H

× {
B1δij δklδmn + B2(δikδjlδmn + δilδjkδmn)

+ B3(δij δkmδln + δij δknδlm + δimδjnδkl

+ δinδjmδkl) + B4
(
δikδjmδln + δikδjnδlm

+ δilδjmδkn + δilδjnδkm + δimδjkδln

+ δimδjlδkn + δinδjkδlm + δinδjlδkm

)}
,

(111)

where

B1 = 4

3
(3A1 + 2A2 + 2A3)(3κB − 2μB)μB

+ 4A1μ
2
B,

B2 = 4A2μ
2
B, B3 = −3

4
B1, B4 = −3

4
B2,

A1 = 4

105

3κ0 + μ0

μ0(3κ0 + 4μ0)
,

A2 = − 1

35

3κ0 + 8μ0

μ0(3κ0 + 4μ0)
,

A3 = −3

4
A1, A4 = −3

4
A2,

κB = (κ1 − κ2)(3κ2 + 4μ2)

3κ2 + 4μ2 + 3(1 − c1)(κ1 − κ2)

μB = 5μ2(μ1 − μ2)(3κ2 + 4μ2)

5μ2(3κ2 + 4μ2) + 6(1 − c1)(μ1 − μ2)(κ2 + 2μ2)
,

(112)

and

H =
∫ ∞

0
h(r)dr, (113)

so that in the case of nonoverlapping identical spheri-
cal inclusions the latter reads as follows:

H = a2 (2 − c1)(1 − c1)

5(1 + 2c1)
. (114)

Finally, in the case of isotropic material, the sixth-
order tensor D can be expressed as follows (see [16]):

D[t, e] = β(1)(tr e)(tr t)I + β(2)(tr t)e

+ β(3)
{
(tr e)t + [

tr(et)
]
I
} + β(4)[et + te],

(115)
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where β(j) (j = 1, . . . ,4) represent material dimen-
sionless constants.

6 Quantitative estimates of minimum RVE size

In analogy with [15], this section is devoted to ob-
tain quantitative estimates of the minimum size 
 of
the RVE (Representative Volume Element) required to
approximate the second order nonlocal response of the
prestressed solid with its local part (100) within a max-
imum fixed small discrepancy. In other words, a max-
imum fixed error must not be exceeded whenever the
local effective response is considered to approximate
the overall constitutive behavior of the random com-
posite in comparison to the full second gradient non-
local description (109).

In order to achieve such minimum size we compare
the non-local response originated by superimposition
of a sinusoidal strain field upon a prestress field to the
local part of the overall constitutive equation for the
random composite, namely:

(A)

〈σ 〉(x) = [
L0 + 〈T̃〉(0)

]〈e〉(x) + Σ2(x)

+ 〈T̃〉(0)(L1 − L2)
−1[Σ1(x) − Σ2(x)

]
,

(B)

〈 ◦
σ 〉(x) = [

L0 + 〈
T̃

∗〉(0)
]〈e〉(x),

(116)

where, for the total approach (A) the local part of rela-
tion (109) has been recast in a slightly more revealing
way.

In particular, we examine the following cases:

– deformable (and void) inclusions

e1(x) = e2(x) = 〈e〉(x) = e sin

(
2πx1




)
, (117)

– rigid inclusions

e1(x) = 0, e2(x) = 〈e〉(x)

1 − c1
= e sin

(
2πx1




)
,

(118)

where e represents the amplitude tensor of the super-
imposed deformation and 
 is its wavelength.

For the sake of simplicity in the numerical exam-
ples we assume null pre-existing stress t within the in-
clusions,

t1(x) = 0 ⇒ Σ1(x) = 0, (119)

and we neglect the presence of superimposed infinites-
imal rigid-rotations,

w1(x) = w2(x) = 0 ⇒ H1(x) = e1(x),

H2(x) = e2(x).
(120)

An example is explored by considering aluminum
as the matrix material; in particular we refer to the fol-
lowing Poisson’s ratio for the matrix

ν2 = 3κ2 − 2μ2

2(3κ2 + μ2)
= 0.33, (121)

and we use the values for the material constants β
(i)
2

reported in [16] and obtained in [17],

β
(1)
2 = 0.89, β

(2)
2 = 0.96,

β
(3)
2 = −2.63, β

(4)
2 = −4.54.

(122)

As far as the inclusion phase is concerned, we consider
three different cases:

– void inclusions (μ1 = κ1 = 0);
– rigid inclusions (μ1 = κ1 → ∞);
– alumina inclusions (μ1 = 6.65μ2, ν1 = 0.2).

In the next sections sinusoidal strain fields superim-
posed either upon a constant prestress for both cases A
and B or a sinusoidal distribution for the total formu-
lation A alone are considered.

6.1 Constant prestress

Considering a sinusoidal strain superimposed upon a
constant prestress field,

t2(x) = t, (123)

where t is the ‘tensorial’ amplitude of the prestress,
the non-local description (109) leads to
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Fig. 1 Dimensionless minimum size of the RVE 
N/2a as a function of the concentration of void (green), rigid (red) and alumina
(blue, ν1 = 0.2 and μ1 = 6.65μ2) inclusions c1 such that an error of 5 %, Eq. (127), is not exceeded with the local effective response
given by approaches A and B, Eqs. (124), (126). Amplitude deformation e11 is considered superimposed to an amplitude prestress
state with only non-null component t11 = 5 · {−10−2;0;10−2}μ2 in a matrix with ν2 = 0.33 (Color figure online)

(A)

〈σ 〉(x) =
{[

L2 + 〈T̃〉(0) + 2π2


2
〈T̃〉,11(0)

]

× [
e − [L1 − L2]−1Ω

]

+ L1[L1 − L2]−1Ω

}
sin

(
2πx1




)

+ [
L1 − L2 − 〈T̃〉(0)

][L1 − L2]−1t,

(B)

〈 ◦
σ 〉(x) =

[
L0 + 〈

T̃
∗〉(0) + 2π2


2

〈
T̃

∗〉
,11(0)

]

× e sin

(
2πx1




)
,

(124)

valid for non-rigid inclusions, where

Ω = (
1 + β

(4)
2

)
(et + te) − tr(e)t + β

(1)
2 (tr e)(tr t)I

+ β
(2)
2 (tr t)e + β

(3)
2

{
(tr e)t + [

tr(et)
]
I
}
, (125)

while in the particular case of rigid inclusions (L1 →
∞), the non-local description (109) simplifies as fol-
lows:

(A)

〈σ 〉(x) = t +
{
(1 − c1)

[
L2 + 〈T̃〉(0)

+ 2π2


2
〈T̃〉,11(0)

]
e + Ω

}
sin

(
2πx1




)
,

(B)

〈 ◦
σ 〉(x) = (1 − c1)

[
L0 + 〈

T̃
∗〉(0) + 2π2


2

〈
T̃

∗〉
,11(0)

]

× e sin

(
2πx1




)
. (126)

To evaluate the error in the local effective response
with respect to the non-local response, we consider the
related variations in the only component of stress σij

(or
◦
σ ij ) conjugate to the only non-zero superimposed

strain eij . Since in Eq. (124) we have the sum of a
constant value and a sinusoidal function (which am-
plitude depends both on local and non-local terms), in
order to estimate the minimum RVE size, we impose
that the ratio between such amplitudes (for the refer-

ence stress component σij or
◦
σ ij ) does not exceed a

fixed error-threshold α, i.e.
∣∣∣∣
Non-local termij

Local termij

∣∣∣∣ ≤ α. (127)

Criteria (127) yields the estimate of the minimum RVE
size 
; this is found to behave like the square root of a
function of c1 and of the amplitude t.

In Figs. 1 and 2 the influence of uniform normal
prestress on the minimum RVE size 
N (superim-
posed normal average strain, e11) and 
S (superim-
posed shear average strain, e12), respectively, is shown
for the three cases considered (voids, rigid inclusions,
elastic inclusions formed by alumina).
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Fig. 2 Dimensionless minimum size of the RVE 
S/2a as a function of the concentration of void (green), rigid (red) and alumina
(blue, ν1 = 0.2 and μ1 = 6.65μ2) inclusions c1 such that an error of 5 %, Eq. (127), is not exceeded with the local effective response
given by approach A and B, Eqs. (124), (126). Amplitude deformation e12 is considered superimposed to an amplitude prestress state
with only non-null component t11 = 5 · {−10−2;0;10−2}μ2 in a matrix with ν2 = 0.33 (Color figure online)

Figure 1 reveals that both for the total, (A), and
for the incremental, (B), approach a normal constant
prestress t11 acting on composites exhibiting ran-
domly distributed spherical rigid inclusions causes
high deviation of the RVE size with respect to the un-
prestressed case. The total response is also affected
by the presence of elastic inclusions (alumina in this
case), whereas if voids are present the discrepancy
between the prestressed and un-prestressed case are
minimal. On the other hand, the incremental response
is sensitive to all types of inclusions. The presence of
compressive prestress when either elastic or rigid in-
clusions are present tends to significantly lower the
RVE size, whereas tensile prestresses have the op-
posite effect. This behavior is reversed if voids are
present, although this is significant only for the incre-
mental response.

Figure 2 confirms that, similarly to unprestressed
materials, the minimum RVE size defined by the su-
perimposition of sinusoidal shear average strain is less
restrictive than the corresponding condition arising
with the superimposition of sinusoidal normal strain,
i.e. 
S < 
N .

Finally, results (not reported here for conciseness)
about pure shear prestresses t12 turn out not to influ-
ence the response given by either A and B formula-
tions, ultimately leading to the conclusion that con-
stant normal prestresses t11 are the only responsible
for significant deviation of the RVE size from the val-
ues achieved for the un-prestressed composite.

6.2 Sinusoidal prestress

In this section formulation A is employed to study the
influence on the RVE size of spatially varying residual
stresses. To this purpose, sinusoidal strains superim-
posed on sinusoidal prestresses are considered, where
the latter may be written in the following form:

t2(x) = t sin

(
2πx1

L

)
, (128)

where the subscript 2 indicates that this is the prestress
of the matrix, L is the wavelength characterizing the
prestress and t is the ‘tensorial’ amplitude. By virtue
of trigonometric identities, the non-local description
(109) leads to the following expression of the total
stress

〈σ 〉(x)

=
[
L2 + 〈T̃〉(0) + 2π2


2
〈T̃〉,11(0)

]
e sin

(
2πx1




)

+
[
L1 − L2 − 〈T̃〉(0) − 2π2

L2
〈T̃〉,11(0)

]

× [L1 − L2]−1t sin

(
2πx1

L

)

+ 1

2

[
L1 − L2 − 〈T̃〉(0) − 2π2

(

 − L


L

)2

〈T̃〉,11(0)

]
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Fig. 3 Dimensionless minimum size of the RVE 
N/2a as a function of the concentration of the void inclusions c1 for different
wavelengths of the prestress LN = {0.5;1;2;4}2a such that an error of 5 %, Eq. (131), is not exceeded with the local effective
response given by approach A, Eq. (129). Amplitude deformation e11 = 10−3 is considered superimposed to an amplitude prestress
state with only non-null component t11 = 5 · {10−4;10−3;10−2}μ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W)
case (Drugan and Willis [15]) is reported dashed (Color figure online)

Fig. 4 Dimensionless minimum size of the RVE 
S/2a as a function of the concentration of the void inclusions c1 for different
wavelengths of the prestress LS = {0.5;1;2;4}2a such that an error of 5 %, Eq. (131), is not exceeded with the local effective
response given by approach A, Eq. (129). Amplitude deformation e12 = 10−3 is considered superimposed to an amplitude prestress
state with only non-null component t12 = 5 · {10−4;10−3;10−2}μ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W)
case (Drugan and Willis [15]) is reported dashed (Color figure online)

× [L1 − L2]−1Ω cos

[
2πx1

(
1

L
− 1




)]

− 1

2

[
L1 − L2 − 〈T̃〉(0) − 2π2

(

 + L


L

)2

〈T̃〉,11(0)

]

× [L1 − L2]−1Ω cos

[
2πx1

(
1

L
+ 1




)]
, (129)

valid for non-rigid inclusions, where Ω is defined by
Eq. (125), and we distinguish four different periodic

functions with their respective wavelengths and their
local and non-local amplitude.

In the case of rigid inclusion (L1 → ∞), the non-
local description (109) takes the following simplified
form:

(A)

〈σ 〉(x) = (1 − c1)

[
L2 + 〈T̃〉(0) + 2π2


2
〈T̃〉,11(0)

]
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Fig. 5 Dimensionless minimum size of the RVE 
N/2a as a function of the concentration of the alumina (ν1 = 0.2, μ1 = 6.65μ2)
inclusions c1 for different wavelengths of the prestress LN = {0.3;0.5;1;2}2a such that an error of 5 %, Eq. (131), is not exceeded
with the local effective response given by approach A, Eq. (129). Amplitude deformation e11 = 10−3 is considered superimposed to
an amplitude prestress state with only non-null component t11 = 5 · {10−4;10−3;10−2}μ2 in an aluminum matrix with ν2 = 0.33.
Corresponding null prestress (D-W) case (Drugan and Willis [15]) is reported dashed (Color figure online)

Fig. 6 Dimensionless minimum size of the RVE 
S/2a as a function of the concentration of the alumina (ν1 = 0.2, μ1 = 6.65μ2)
inclusions c1 for different wavelengths of the prestress LS = {0.3;0.5;1;2}2a such that an error of 5 %, Eq. (131), is not exceeded
with the local effective response given by approach A, Eq. (129). Amplitude deformation e12 = 10−3 is considered superimposed to
an amplitude prestress state with only non-null component t12 = 5 · {10−4;10−3;10−2}μ2 in an aluminum matrix with ν2 = 0.33.
Corresponding null prestress (D-W) case (Drugan and Willis [15]) is reported dashed (Color figure online)

× e sin

(
2πx1




)
+ t sin

(
2πx1

L

)

+ 1

2
Ω

{
cos

[
2πx1

(
1

L
− 1




)]

− cos

[
2πx1

(
1

L
+ 1




)]}
. (130)

It is worth noting that in the rigid inclusion case the
amplitude of the stress depends only on the magnitude
of the prestress and not on its wavelength L.

In order to evaluate the error encountered by as-

suming the local effective constitutive equation in-

stead of the full second gradient non-local response,

we compare the corresponding descriptions for the

component of stress σij conjugate to the only non-

null superimposed strain eij . The minimum RVE size

below which the non-local description is required is

obtained assuming a ‘pointwise’ criteria for the max-

imum value achieved by the reference stress compo-
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Fig. 7 Dimensionless minimum size of the RVE 
N/2a as a function of the concentration of the rigid inclusions c1 for any value of
wavelength of the prestress such that an error of 5 %, Eq. (131), is not exceeded with the local effective response given by approach
A, Eq. (129). Amplitude deformation e11 = 10−3 is considered superimposed to an amplitude prestress state with only non-null
component t11 = 5 · {10−4;10−3;10−2}μ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W) case (Drugan and Willis
[15]) is reported dashed (Color figure online)

nent σij , namely

∑4
c=1 |Non-local term(c)

ij |
∑4

c=1 |Local term(c)
ij |

≤ α. (131)

This enforces that the ratio between the extra-
amplitude given by the non-local response and the am-
plitude given by the local one is bounded by a fixed
error α.

The case of matrix with voids is examined at first
in Figs. 3 and 4. The former deals with superimposed
sinusoidal longitudinal strains, characterized by wave-
length 
N , on sinusoidal normal prestresses of wave-
length LN . In this case, no matter what the amplitude
of the prestress is, the shorter LN the higher the ampli-
fication on 
N ; more specifically, if the ratio between
the prestress wave length and the diameter of the voids
LN/a is 0.5 the RVE size measured through the ratio

N/a tends to be very high even for very dilute com-
posites and, hence, the resulting behavior is fully non-
local. This is definitely the case for small and moder-
ate prestress amplitudes (Fig. 3 left and center). In the
first of such two cases relatively less oscillating nor-
mal prestresses show practically a behavior analogous
to the un-prestressed case (labelled with D-W in the
figures since the results display the approach of Dru-
gan and Willis in [15]). When higher amplitudes of the
prestress are considered (Fig. 3 right), then even os-
cillations of the prestress relatively moderate, such as

LN/a = 2 may cause a rapid increase of the RVE size
for relatively diluted composites. From the last two
figures it is displayed how a drastic reduction of the
RVE may be obtained whenever longitudinal strains
are superimposed on relatively slowly oscillating pre-
stresses (such as LN/a = 4) with moderate to high
amplitudes.

The analogous of the previous case applied to shear
strains superimposed on oscillating shear prestress,
Fig. 4. In this situation, unlike for the case of lon-
gitudinal strains superimposed on normal prestresses,
rapidly oscillating residual shear stresses with small
amplitudes do not cause the blow-up of the RVE
size (Fig. 4 left). As the amplitude of the prestress
increases, this blow-up phenomenon arises even in
this case. If the shear prestress has slower oscilla-
tions and higher amplitude, the deviation from the un-
prestressed case becomes more and more evident, re-
sulting on a drastic reduction on the RVE size required
to represent the overall response of the composite with
the local term alone for the given threshold α.

Figures 5 and 6 display similar analysis for elas-
tic (alumina) inclusion case, where sinusoidal longi-
tudinal strains and shears are superimposed on sinu-
soidal normal prestresses respectively. Trends already
seen in Fig. 4 for the case of voids are similarly ob-
served for elastic inclusions, even when longitudinal
strains act together with normal prestresses. Higher
amplitudes and slower spatial oscillation of the pre-
stress significantly reduce the RVE size, whereas the
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Fig. 8 Dimensionless minimum size of the RVE 
S/2a as a function of the concentration of the rigid inclusions c1 for any value of
wavelength of the prestress such that an error of 5 %, Eq. (131), is not exceeded with the local effective response given by approach
A, Eq. (129). Amplitude deformation e12 = 10−3 is considered superimposed to an amplitude prestress state with only non-null
component t12 = 5 · {10−4;10−3;10−2}μ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W) case (Drugan and Willis
[15]) is reported dashed (Color figure online)

danger of relatively small amplitudes with very rapid
oscillations may result either in a magnification of
the RVE size with respect to the un-prestressed case
or on its blow-up. The cases of e11 superimposed to
t12 and e12 superimposed to t11 are not displayed in
this paper because they give very similar estimates to
the RVE size as in the un-prestressed case. Whenever
rigid inclusions within an elastic matrix form the ran-
dom composite the results of superimposing longitu-
dinal strains on normal or shears and shear strains on
shear prestresses are displayed in Figs. 7 and 8 respec-
tively. Since in this case no dependence on the pre-
stress wavelength L appears, Eq. (130), no blow-up
is ever observed. Furthermore, the RVE size is less
than that estimated in [15] without prestress no matter
what the concentration of rigid inclusions is. Hence, in
such a case, the RVE size estimated without residual
stresses is an upper bound on the actual RVE size ef-
fectively required to approximate the overall response
with the local term alone.
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