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Abstract

A lamellar (zero-thickness) rigid inclusion, so-called ‘stiffener’, is considered embedded in a uniformly prestressed

(or prestrained), incompressible and orthotropic elastic sheet, subject to a homogeneous far-field deformation increment.

This problem is solved under the assumption of plane strain deformation, with prestress principal directions and

orthotropy axes aligned with the stiffener. A full-field solution is obtained solving the Riemann–Hilbert problem for

symmetric incremental loading at infinity (while for shear deformation the stiffener leaves the ambient field unperturbed).

In addition to the full-field solution, the asymptotic Mode I near-tip representation involving the corresponding

incremental stress intensity factor are derived and these results are complemented with the Mode II asymptotic solution.

For null prestress, the full-field stress state is shown to match correctly with photoelastic experiments performed by us

(on two-part epoxy resin samples containing an aluminum lamina). Our experiments also confirm the fracture patterns for

a brittle material containing a stiffener, which do not obey a hoop-stress criterion and result completely different from

those found for cracks. Issues related to shear band formation and evaluation of energy release rate for a stiffener growth

(or reduction) are deferred to Part II of this article.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Imposing large deformation to a soft, ductile metal matrix containing a thin lamellar hard phase is a
well-established industrial process for the production of ultra high strength materials (Öztürk et al., 1994;
Michler et al., 2004). A number of instabilities at the microscale occurs during this process and, in particular,
the deformation of the soft phase has been shown to be very localized in the proximity of the stiff, thin
inclusions (Öztürk et al., 1991). Localization of deformation in the form of shear bands is usually related to
loss of ellipticity (of the equations governing quasi-static incremental deformation). Therefore, the availability
of an analytical solution for a thin, rigid inclusion, a so-called ‘stiffener’, embedded in a remotely loaded,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Isochromatic fringe pattern obtained employing a transmission photoelastic test with polarization axes inclined at �p=4 with respect to

the stiffener (a near-tip detail is reported right) at 0.11MPa mean tensile loading on a (10.3mm thick, two-component epoxy resin) sample (S1 in

Appendix A) containing an (20mm � 10.3mm � 0.3mm) aluminum platelet (photo taken with a Nikon D200 digital camera at the University

of Trento). Photoelastic results are compared with theoretical solution in terms of in-plane principal stress difference contours plotted for an

incompressible and isotropic elastic material, initially unstressed, and deformed in plane strain (see Appendix A for a full discussion).
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infinite medium—in which stress and displacement fields can be obtained for an incremental perturbation
superimposed upon a stress state near the boundary of ellipticity loss—is important for understanding the
mechanical behaviour of the above-mentioned materials. The achievement of this solution is the main result of
the present article. However, we also notice that (even for linearly elastic isotropic materials) a stiffener
determines a singular solution that poses a number of questions, not arising in other situations (particularly, in
the case of a crack, which induces the same singularity). In fact, it can be observed that:
�

1

2

alte
While cracks can ‘naturally’ exist in ordinary materials, can a stiffener—which necessarily is something
artificial—be in practice introduced in a real material?

�
 Due to several possible discrepancies (not arising in the crack problem) between model and reality (a stiff,

thin inclusion has a finite thickness and stiffness, and adhesion at the stiffener/matrix contact is necessarily
imperfect), will the real stress state correspond to the elastic solution?

�
 Unlike cracks, stiffeners can produce a singular, non-trivial stress even when they are subject to

compressive stresses or when they are pulled in uniaxial tension parallelly to them. Will a material in these
cases fail due to the presence of the singularity?

�
 For tensile (or compressive) loading parallel (or orthogonal) to the stiffener, the material is predicted to fail

through the generation of a fracture orthogonal to the stiffener at its end and not following the hoop-stress
criterion valid for cracks. Will this prediction be in practice true?

Having found nothing on these issues in the literature, we have designed and realized stiffeners in a real
material and produced and tested samples (details are reported in Appendix A1). Results of two experiments
are shown in Figs. 1 and 2. In particular, the isochromatic fringe pattern recorded in a transmission
photoelastic test performed with a plane polariscope is reported in Fig. 1, strikingly confirming the analytical
solution for the in-plane principal stress difference contours (an incompressible, isotropic material initially
unstressed has been considered).

The fracture growth sequence for tensile loading parallel to the stiffener is reported in Fig. 2, which—
according to the linear elastic theory (without prestress)—develops orthogonally to the stiffener end.
Therefore, our experiments provide positive answers to the questions listed above, so that the stiffener model
may be considered a sound model in elasticity2 (a systematic discussion on Mode I fracture modes at a
stiffener tip is reported in Section 4).
Additional experimental results are available on: http://www.ing.unitn.it/dims/laboratories/structural_modeling_photoelasticity.php.

It may be worth noting that our photoelastic and failure experiments show that the hypotheses of plane strain and incompressibility do not

r results qualitatively. Regarding the former assumption, since a stiffener imposes null deformation on his surface, any sufficiently wide

http://www.ing.unitn.it/dims/laboratories/structural_modeling_photoelasticity.php
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Fig. 2. Growth of two fractures at the end of an (30mm � 10.6mm � 0.3mm) aluminum platelet embedded in a (10.6mm thick, two-

component epoxy resin) sample (S2 in Appendix A) under vertical tensile loading (photos taken with a Nikon D200 digital camera at the

University of Trento). Both fractures have initiated horizontally (at a mean stress near to 30MPa), where the stiffener is still attached to

the resin (a detachment has developed at the end of the stiffener, due to out-of-plane contraction, see Appendix A for a full discussion).
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Going back now to the main goal of the present article, a thin, rigid line inclusion is considered embedded in
an infinite, incompressible, orthotropic material3 uniformly prestressed (or prestrained), with principal stress
directions aligned parallel and orthogonal to the inclusion (the formulation is given in Section 2). When a
generic perturbation field is superimposed upon this state, a stress singularity is produced near the inclusion
tip. The Modes I and II asymptotic fields are obtained (in Section 3) with a complex potential technique
similar to that employed by Radi et al. (2002), revealing a stress singularity �1=

ffiffi
r
p

, as in the case when the
prestress is absent. Moreover, a perturbation in the form of a uniform Eulerian strain increment field is
considered at infinity. In this case, only the perturbation stress fields satisfying Mode I symmetry are non-
trivial (for incremental shear deformation at infinity the stiffener leaves the fields unperturbed) and their
determination represents the solution of a Riemann–Hilbert problem, which is already known in the absence
of prestress for isotropic or anisotropic (compressible) elasticity (Wang et al., 1985; Ballarini, 1987; Wu, 1990;
Hurtado et al., 1996; Dascalu and Homentcovschi, 1999; Homentcovschi and Dascalu, 2000; see also Koiter,
1955; Erdogan and Gupta, 1972; Atkinson, 1973 where an elastic lamellar inclusion has been considered), but
has never been considered for a prestressed material.4 This solution is provided in this paper (Section 5) within
the elliptic range and it can be exploited until near the boundary of ellipticity loss, thus revealing the
emergence of localized deformation patterns (an important problem deferred to Part II of this article, together
with considerations of incremental energy release rate for stiffener growth). Note that our solution is strictly
valid when the state of prestress upon which the modes I and II perturbations are superimposed is uniform.
Obviously, such a uniform prestress state cannot result from uniform remote loading of a homogeneous
material containing a stiffener. Therefore, our calculations are strictly applicable to a model problem, which
describes a situation in which a uniform stress is generated, for instance, through a constrained transformation
strain (such a uniform temperature variation or phase transformation of a specimen with prevented
(footnote continued)

platelet embedded in a material will have a state of plane strain prevailing near its centre (see also the discussion reported in Appendix A).

Regarding the latter assumption, extension of our results to compressible orthotropic, incremental elasticity is straightforward and does not

change qualitatively results for shear band emergence.
3More in detail, the material model falls within the Biot (1965) constitutive framework, which embraces Mooney–Rivlin and Ogden

(1972, 1984) materials and the J2-deformation theory of plasticity (useful in the modelling of rubber materials and for the analysis of the

loading response of highly deformed metals, see Hutchinson and Neale, 1979; Hutchinson and Tvergaard, 1981).
4Guz and co-workers (see Guz, 1999 and references quoted therein) and Soós and co-workers (see Cristescu et al., 2004 and references

quoted therein) have solved a number of problems for prestressed elastic materials, but—as far as the authors are aware—they have never

considered stiffeners.



ARTICLE IN PRESS
F. Dal Corso et al. / J. Mech. Phys. Solids 56 (2008) 815–838818
displacements at the boundary, see Li et al., 2003; Zheng et al., 2000), or in which a rigid thin layer is ‘welded’
subsequently to a uniform prestrain of a material. However, direct comparison of our solutions with
experimental results performed by Öztürk et al. (1991) and by us (see Part II of this article) shows that our
model is able to correctly predict the shear band patterns evidenced near the tip of the stiffener when the
surrounding field is inhomogeneously deformed (a circumstance also confirmed by numerical solutions not
reported for conciseness). Briefly, we believe that this fact is not incidental, rather it is related to the
circumstance that localized deformations within shear bands dominate previously developed inhomogeneous,
but small, deformation (see also the discussion on Part II of this article).

2. Governing incremental equations

Consider a two-dimensional, incompressible, elastic body, homogeneously prestressed along two
orthogonal directions, x1 and x2, with Cauchy principal stresses denoted by s1 and s2. A zero-thickness
stiffener of length 2l is aligned along the axis x1 such that it occupies a segment S having extremal points of
coordinates ð�l; 0Þ, ðl; 0Þ in the system Ox1x2 (Fig. 3).

The incremental, orthotropic, response of the body is governed by the Biot (1965) constitutive equations
(see Radi et al., 2002; Brun et al., 2003 for details), relating the increment in nominal stress _tij to the
incremental in-plane mean stress _p and displacement gradient vi;j as

_t11 ¼ mð2x� k � ZÞv1;1 þ _p; _t22 ¼ mð2xþ k � ZÞv2;2 þ _p;

_t12 ¼ m½ð1þ kÞv2;1 þ ð1� ZÞv1;2�; _t21 ¼ m½ð1� ZÞv2;1 þ ð1� kÞv1;2�;
(1)

where incompressibility requires (the usual summation convention for repeated indices is assumed)

vi;i ¼ 0. (2)

In Eqs. (1), m is the incremental shear modulus, while x; Z; k are dimensionless constants depending on the
principal components of Cauchy prestress s1 and s2 and on the incremental modulus m� for a shear inclined at
p=4 to the principal stress axes, namely

x ¼
m�
m
; Z ¼

p

m
¼

s1 þ s2
2m

; k ¼
s1 � s2

2m
. (3)

The Cauchy stress tensor and the nominal stress tensor are related through r ¼ J�1Ft, where F is the
deformation gradient and J ¼ det F ¼ 1 for incompressibility.

Obviously, the material response depends much on the choice of the specific elastic model and related
potential, which dictates the dependence of incremental moduli (3) on the stretches in the current
configuration. We will use two models as paradigmatic examples: the Mooney–Rivlin material and the
J2-deformation theory of plasticity, yielding quite different results (the interested reader is referred to Brun
et al., 2003 for a detailed explanation of these material models).

Incremental equilibrium ð_tij;i ¼ 0Þ yields the following two equations:

_p;1 ¼ m½ð1þ k � 2xÞv1;11 � ð1� kÞv1;22�,

_p;2 ¼ m½ð1� k � 2xÞv2;22 � ð1þ kÞv2;11�, ð4Þ
l x1

r

ϑ

σ2

σ1

σ2

σ1

x2

-l

S

Fig. 3. Stiffener, prestressed state and reference systems.
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that, together with Eq. (2), provide a system of partial differential equations for v1; v2 and _p. A stream function

cðx1;x2Þ with the property

v1 ¼ c;2; v2 ¼ �c;1, (5)

then satisfying Eq. (2) can be introduced, so that the elimination of _p in Eq. (4) gives the fourth-order partial
differential equation

ð1þ kÞc;1111 þ 2ð2x� 1Þc;1122 þ ð1� kÞc;2222 ¼ 0. (6)

A solution of Eq. (6) can be represented in terms of the analytic function bF
cðx1; x2Þ ¼ bF ðx1 þ Ox2Þ, (7)

where O is a complex constant satisfying a biquadratic equation obtained inserting representation (7) in
Eq. (6). Its four roots Oj (j ¼ 1; . . . ; 4) satisfy

O2
j ¼

1� 2xþ ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 4xþ k2

p
1� k

, (8)

and are real or complex depending on the values of x and k. In compact form, we write Oj ¼ aj þ ibj ðj ¼

1; . . . ; 4Þ and define the four complex variables

zj ¼ x1 þ Ojx2 ¼ x1 þ ajx2 þ ibjx2 ðj ¼ 1; . . . ; 4Þ, (9)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and aj ¼ Re½Oj � and bj ¼ Im½Oj�.
Through Eqs. (7) and (9), the general solution of the differential equation (6) can be recast as

cðx1; x2Þ ¼
X4
j¼1

bFjðzjÞ. (10)

The field quantities may be obtained by the following conditions:
�
 the stream function c must be real valued;

�
 the velocity field must satisfy the constraint (leaving an arbitrary rigid-body rotation of the stiffener

unprescribed)

v1;1ðx1; 0Þ ¼ v2;11ðx1; 0Þ ¼ 0 if jx1jol, (11)

on the rigid line inclusion;

�
 the incremental stress field must satisfy the symmetry conditions (asymptotic problem) or the condition on

the incremental nominal stress (produced by prescribed Eulerian strain) at infinity (full-field problem).

2.1. Classification of regimes

The roots Oj, defined by Eq. (8) and changing their nature according to the values taken by parameters x
and k, can be classified as follows.
�
 Four real roots in the hyperbolic regime (H) (k2o1 and 2xo1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
),

O1 ¼ a1
O2 ¼ a2
O3 ¼ �O1

O4 ¼ �O2

where
a1
a2

)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 4xþ k2

p
1� k

s
. (12)
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Two real and two imaginary roots in the parabolic regime (P) ðk241Þ,
�
O1 ¼ a

O2 ¼ ib

O3 ¼ �O1

O4 ¼ �O2

where
a

b

)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x	 Sign½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 4xþ k2

p
1� k

s
. (13)
�
 Four complex conjugate roots in the elliptic complex (EC) regime (k2o1 and 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
o

2xo1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
),

O1 ¼ �aþ ib

O2 ¼ aþ ib

O3 ¼ O1

O4 ¼ O2

where
a

b

)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
	 ð2x� 1Þ

2ð1� kÞ

s
. (14)

ffiffiffiffiffiffiffiffiffiffiffiffiffip

�
 Four imaginary conjugate roots in the elliptic imaginary (EI) regime (k2o1 and 2x41þ 1� k2),

O1 ¼ ib1
O2 ¼ ib2
O3 ¼ O1

O4 ¼ O2

where
b1
b2

)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 4xþ k2

p
1� k

s
. (15)

A sketch of regime classification in the k � x plane has been given by Radi et al. (2002, their Fig. 2).
The following analysis is restricted to the elliptic regime (the cases EC and EI are treated separately), where

shear bands in terms of discontinuities of the gradient of incremental displacement are excluded.

3. Asymptotic solution of a stiffener embedded in an elastic, prestressed infinite plane

Near the tip of the rigid line inclusion the kinematic and static fields may be approximated by their
asymptotic expansions. Let us focus on the tip of coordinates ðl; 0Þ. The complex variables zj ðj ¼ 1; . . . ; 4Þ
defined in Eq. (9) admit the polar representation

zj ¼ l þ rje
iWj ðj ¼ 1; . . . ; 4; no sum on index jÞ, (16)

with

rj ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos Wþ aj sin WÞ

2
þ b2j sin

2 W
q

,

tan Wj ¼
bj sin W

cos Wþ aj sin W
ðj ¼ 1; . . . ; 4; no sum on index jÞ, ð17Þ

where r and W are the polar coordinates of a generic point (Fig. 3).
In the neighbourhood of the tip ðl; 0Þ the stream function can be now expressed in the power-expansion

form

cðx1; x2Þ ¼
2 _K

3m
ffiffiffi
p
p

X4
j¼1

Ajðzj � lÞg ¼
4 _K

3m
ffiffiffi
p
p

X2
n¼1

Re½Anwg
n�, (18)

where the notation wj ¼ zj � l ¼ rje
iWj ðj ¼ 1; . . . ; 4Þ has been introduced. The last term is a two-term

summation because w
g
j ¼ w

g
j and, as the stream function must be real-valued, the complex constants Aj satisfy

the property A3 ¼ A1 and A4 ¼ A2. Constants An ðn ¼ 1; 2Þ may be represented as

An ¼ an þ ibn ðn ¼ 1; 2Þ, (19)
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with an and bn real constants. The parameter _K plays the role of an incremental intensity factor, remains
undetermined in an asymptotic analysis and will be discussed in detail later in this section.

3.1. Symmetry conditions

The asymptotic form of the relevant quantities in Modes I and II loading conditions can be obtained
imposing the following symmetry conditions on the incremental displacement field:

Mode I: v1ðx1;x2Þ ¼ v1ðx1;�x2Þ; v2ðx1;x2Þ ¼ �v2ðx1;�x2Þ, ð20Þ

Mode II: v1ðx1;x2Þ ¼ �v1ðx1;�x2Þ; v2ðx1;x2Þ ¼ v2ðx1;�x2Þ. ð21Þ

In the next subsection, the asymptotic fields in the vicinity of the line tip for the EC regime will be derived for
both Modes I and II, summarizing in Appendix B the analogous procedure for the EI regime.

3.2. Asymptotic fields in the EC regime

In the EC regime the roots Oj ðj ¼ 1; . . . ; 4Þ assume the form (14). The asymptotic expansions of the
incremental quantities may be obtained by substituting the expression of the stream function ð18Þ2 in Eqs. (5),
(1), and (4) (see Radi et al., 2002 for details) to yield

v1 ¼
4g _K
3m

ffiffiffi
p
p

X2
n¼1

fð�1ÞnaRe½Anwg�1
n � � b Im½Anwg�1

n �g,

v2 ¼ �
4g _K
3m

ffiffiffi
p
p

X2
n¼1

Re½Anwg�1
n �,

_t11 ¼
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

fð�1Þnðbdþ waÞRe½Anwg�2
n � þ ðad� wbÞIm½Anwg�2

n �g,

_t22 ¼
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

fð�1Þnðbd� waÞRe½Anwg�2
n � þ ðadþ wbÞ Im½Anwg�2

n �g,

_t12 ¼ �
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

fðwb2 � wa2 þ 2abdÞRe½Anwg�2
n �

þ ð�1Þnðda2 � db2 þ 2wabÞ Im½Anwg�2
n �g,

_t21 ¼ �
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

fwRe½Anwg�2
n � þ ð�1Þ

nd Im½Anwg�2
n �g,

_p ¼
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

fð�1Þna½2ð1� kÞb2 þ k�Re½Anwg�2
n �

þ b½2ð1� kÞa2 � k� Im½Anwg�2
n �g, ð22Þ

where coefficients w; d depend on the prestress and on the incremental moduli through the expressions

w ¼ 2x� Z; d ¼ 2ð1� kÞab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x� 4x2 � k2

q
. (23)

3.2.1. Mode I

Through Eq. (14) and the definition of wj , Mode I symmetry conditions (20) write

v1ðw1;w2Þ ¼ v1ðw2;w1Þ; v2ðw1;w2Þ ¼ �v2ðw2;w1Þ, (24)

which imply

An ¼ ð�1Þ
naþ ib ðn ¼ 1; 2Þ, (25)
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where a and b are real constants. The boundary conditions (11) on the rigid line inclusion (W ¼ p or,
equivalently, Wn ¼ p) lead to the following homogeneous system for the constants a and b:

aa cos gp� bb cos gp ¼ 0; b sin gp ¼ 0. (26)

Non-trivial solution for a and b of system (26) exists if and only if the determinant of the associated matrix
vanishes, occurring when a sinð2gpÞ ¼ 0. Note that a vanishes when

x ¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p� �
, (27)

which represents the boundary between EI and EC domains. Therefore, within the EC regime and assuming
boundedness of incremental energy, we find g ¼ 3

2
, similarly to the stiffener problem in classical linear

elasticity. For g ¼ 3
2
, Eq. ð26Þ2 gives b ¼ 0.

The asymptotic analysis is completed by expressing each variable appearing in Eq. (22) as a product
of a term depending on the radius r with that describing the angular dependence around the rigid-line tip
(variable W)

vðr;WÞ ¼
_K

m

ffiffiffiffiffiffi
r

2p

r
xðWÞ; _tðr;WÞ ¼

_Kffiffiffiffiffiffiffi
2pr
p sðWÞ; _pðr;WÞ ¼

_Kffiffiffiffiffiffiffi
2pr
p rðWÞ. (28)

Since the constant _K remains undetermined in an asymptotic analysis, it is expedient now to introduce a
normalization. For the problem of fracture, Radi et al. (2002) have defined

_K I ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

_t22ðr;W ¼ 0Þ; _KII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

_t21ðr; W ¼ 0Þ, (29)

for Modes I and II incremental loading, respectively. This definition becomes unpractical in the present
context. In fact, t22ð0Þ (and t21ð0Þ for Mode II) vanishes for certain values of prestress, indicated by a dashed
curve in Fig. 4 (note that t22ð0Þ ¼ 0—and t21ð0Þ ¼ 0 for Mode II—even in the case when the prestress is zero).

Therefore, since o2;2 (or o2;1) never vanishes (under the assumption that aa0) for Mode I (or for Mode II),
we follow the suggestion by Wu (1990) and introduce the definition

_K ð�ÞI ¼ lim
r!0

2m
ffiffiffiffiffiffiffi
2pr
p

v2;2ðr;W ¼ 0Þ; _K ð�ÞII ¼ lim
r!0

2m
ffiffiffiffiffiffiffi
2pr
p

v2;1ðr;W ¼ 0Þ, (30)

yielding for Mode I the representation

vðr;WÞ ¼
_K ð�ÞI
m

ffiffiffiffiffiffi
r

2p

r
xðWÞ; _tðr;WÞ ¼

_K ð�ÞIffiffiffiffiffiffiffi
2pr
p sðWÞ; _pðr; WÞ ¼

_K ð�ÞIffiffiffiffiffiffiffi
2pr
p rðWÞ, (31)

where the Mode I incremental stress intensity factor _K ð�ÞI now appears. The relation between the definitions
(30) of incremental stress intensity factors and the energy release rate will be obtained in Part II of this article
and will be shown to be particularly convenient from a mathematical point of view.
Fig. 4. Line (dashed) of points where _KI ¼ 0 for Mode I and _K II ¼ 0 for Mode II in the prestress plane s1=m� s2=m. The white zone

denotes the elliptic and the hyperbolic (EI [ EC [ H) regimes, while the grey zones refer to the parabolic (P) regime.
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The components of the angular functions defined in Eq. (31) for a generic Mode I symmetry assume the
following analytical expressions valid for W 2 ½0;p�:

o1ðWÞ ¼ 2a
X2
n¼1

½acnðWÞ � ð�1Þ
nbsnðWÞ�,

o2ðWÞ ¼ � 2a
X2
n¼1

ð�1ÞncnðWÞ,

t11ðWÞ ¼ a
X2
n¼1

½ðbdþ waÞĉnðWÞ � ð�1Þ
n
ðad� wbÞŝnðWÞ�,

t22ðWÞ ¼ a
X2
n¼1

½ðbd� waÞĉnðWÞ � ð�1Þ
n
ðadþ wbÞŝnðWÞ�,

t12ðWÞ ¼ � a
X2
n¼1

½ð�1Þnðwb2 � wa2 þ 2abdÞĉnðWÞ � ðda2 � db2 þ 2abwÞŝnðWÞ�,

t21ðWÞ ¼ � a
X2
n¼1

½ð�1ÞnwĉnðWÞ � dŝnðWÞ�,

rðWÞ ¼ a
X2
n¼1

fa½2ð1� kÞb2 þ k�ĉnðWÞ � ð�1Þ
nb½2ð1� kÞa2 � k�ŝnðWÞg, ð32Þ

where the following angular functions have been introduced:

gnðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cos Wþ ð�1Þna sin W�2 þ b2sin2W

q
,

cnðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðWÞ þ cos Wþ ð�1Þna sin W

p
; ĉnðWÞ ¼

cnðWÞ
gnðWÞ

,

snðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðWÞ � cos W� ð�1Þna sin W

p
; ŝnðWÞ ¼

snðWÞ
gnðWÞ

. ð33Þ

The definition of _K ð�ÞI ð30Þ1 introduces the normalization condition

do2ðWÞ
dW

����
W¼0
¼ 2, (34)

leading to the following expression for constant a ¼ �1=ð4
ffiffiffi
2
p

aÞ.
3.2.2. Mode II

Through Eq. (14) and the definition of wj , Mode II symmetry conditions (21) write

v1ðw1;w2Þ ¼ �v1ðw2;w1Þ; v2ðw1;w2Þ ¼ v2ðw2;w1Þ, (35)

which imply

An ¼ �a� ð�1Þnib ðn ¼ 1; 2Þ, (36)

being a and b real constants. The boundary conditions (11) yield the homogeneous linear problem

ab sin gpþ ba sin gp ¼ 0; a cos gp ¼ 0, (37)

that leads, again, to a sinð2gpÞ ¼ 0. For g ¼ 3
2
, Eq. ð37Þ1 defines a constraint on the constants a and b, namely,

b ¼ �ab=a.
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Analogously to Mode I, the asymptotic fields may be represented as a product between the Mode II
incremental stress intensity factor _K ð�ÞII (Eq. ð30Þ2) and two functions depending on r and W, respectively, as

vðr;WÞ ¼
_K ð�ÞII
m

ffiffiffiffiffiffi
r

2p

r
xðWÞ; _tðr; WÞ ¼

_K ð�ÞIIffiffiffiffiffiffiffi
2pr
p sðWÞ; _pðr;WÞ ¼

_K ð�ÞIIffiffiffiffiffiffiffi
2pr
p rðWÞ, (38)

where xðWÞ, sðWÞ and rðWÞ assume, in the range W 2 ½0; p�, the form

o1ðWÞ ¼ � 2a
a2 þ b2

a

X2
n¼1

ð�1ÞncnðWÞ,

o2ðWÞ ¼ 2a
1

a

X2
n¼1

½acnðWÞ þ ð�1Þ
nbsnðWÞ�,

t11ðWÞ ¼ a
a2 þ b2

a

X2
n¼1

½�ð�1ÞnwĉnðWÞ þ dŝnðWÞ�,

t22ðWÞ ¼ a
a2 þ b2

a

X2
n¼1

½ð�1ÞnwĉnðWÞ þ dŝnðWÞ�,

t12ðWÞ ¼ � a
a2 þ b2

a

X2
n¼1

½ðaw� bdÞĉnðWÞ þ ð�1Þ
n
ðadþ bwÞŝnðWÞ�,

t21ðWÞ ¼ � a
1

a

X2
n¼1

½�ðaw� bdÞĉnðWÞ þ ð�1Þ
n
ðadþ bwÞŝnðWÞ�,

rðWÞ ¼ a
a2 þ b2

a

X2
n¼1

½�ð�1ÞnkĉnðWÞ þ dŝnðWÞ�. ð39Þ

The normalization condition, o2ð0Þ ¼ 4, now fixes the constant a to be a ¼ 1=ð4
ffiffiffi
2
p
Þ.
4. The strange failure modes near a stiffener in a brittle material

The analysis of the near-tip asymptotic fields reveals interesting features, deserving a detailed description,
confined here to Mode I loading, Eqs. (B.4). In particular, let us start with the angular distribution of Mode I
asymptotic near-tip fields, represented in Fig. 5 for a Mooney–Rivlin material, x ¼ 1 at different levels of
prestress k ¼ f�0:4; 0; 0:4g. The values k ¼ �0:4 are sufficiently far from the EI/P boundary, which is attained
by a Mooney–Rivlin material at an infinite stretch, when k ¼ �1. The value k ¼ 0 pertains to the case of the
isotropic incompressible elasticity with null prestress.

The normalization (30) is used, so that the loading is given by an incremental dilatation orthogonal to the
stiffener v2;240 (which, due to incompressibility, is equivalent to a contraction parallel to the stiffener). We
may note from the figure that the angular distribution is not affected much by prestress, except that the two
nominal shear stresses separate and that the radial stress always remains negative for k ¼ 0:4.

Interestingly, compressive stresses dominate and, in particular, the hoop stress is always negative for k40.
Therefore, assuming that the material is brittle, in the sense that it fails when the maximum tensile hoop stress

reaches a limit value, we note that:
�
 the maximum hoop-stress criterion (Erdogan and Sih, 1963) does not work;

�
 failure will not occur with a fracture aligned parallel to the stiffener, even when this is subject to a Mode I loading.

For simplicity, let us focus on the situation without prestress, k ¼ 0, and assume that the matrix material is
brittle, therefore failing in agreement with a maximum principal stress criterion (so that obviously the
following considerations will depend on these assumptions). The maximum principal stress is attained at the
stiffener line (y ¼ p) and is inclined at p=4 (Fig. 6, left). In this case, the failure mode is not easy to be
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Fig. 5. Angular representation of asymptotic Mode I stress field near the tip of a stiffener in an incompressible, elastic Mooney–Rivlin

material at different levels of prestress k.
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envisaged. Our interpretation is that:

a crack starts on the surface of the inclusion inclined at p=4 (orthogonal to the principal, near-tip tensile

direction) and immediately after the stiffener delaminates and the crack propagates under opening mode

(orthogonally to the loading direction);

this situation has been in fact observed in one of our experiments, see Appendix A and Fig. 8.
If now a dilatation parallel to the stiffener is considered, v1;140 (Fig. 6, right), all signs of the stresses

reverse in the graphs reported in Fig. 5 and we may understand that

failure occurs due to the maximum radial stress,

which is the maximum near-tip principal stress.
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Fig. 6. Sketch of the predicted fracture modes for a stiffener embedded in an isotropic, not prestressed, brittle matrix (where cracks

develop orthogonally to the maximum tensile stress), subject to orthogonal (left) and parallel (right) dilatation. Compare the failure mode

shown on the left with Fig. 8, that shown on the right with Figs. 2 and 7.

Fig. 7. Progressive fracture of sample S1 subject to a tensile load directed parallel to the inclusion (photo taken at the University of Trento

with a Panasonic DMC-FZ5 digital camera). Note that there are two fractures, one at the upper tip and another, much less developed, at

the lower tip of the aluminum lamina.
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The fracture patterns sketched in Fig. 6 have been confirmed by three experiments. In particular, fractures
similar to that shown in Fig. 6 (right) have been found in samples S2, S1, reported in Figs. 2 and 7,
respectively. Fractures similar to that shown in Fig. 6 (left) have been found in sample S4, see Fig. 8.

Until now we have investigated a brittle matrix material, so that a moderate prestress has been considered
and its effects have been shown to be relatively limited. However, ductile materials can be subject to severe
prestress and its effects become dramatic when the prestress parameter approaches the value for ellipticity loss
and in this case near-tip localized deformations emerge, a situation that completely changes the failure modes
(and will be analysed in detail in Part II of the present article).
5. Full-field solution of a stiffener embedded in an elastic, prestressed infinite plane

The full-field solution is obtained for the problem where a uniformly prestressed, infinite plane containing a
stiffener of length 2l (aligned parallel to the principal stress directions) is subject to remote incremental
loading, with prescribed incremental displacement gradient. In particular, the non-null far-field stress
components _tð1Þ11 and _tð1Þ22 are prescribed (respectively, along directions x1 and x2, Fig. 3), corresponding to a
type of Mode I loading. Mode II will not be considered since a stiffener aligned parallel to axis x1 does not
perturb a uniform incremental shear parallel to the axes (a fact that can be intuitively appreciated thinking
about a shearing deformation of a deck of cards and its associated strain ellipses).

Using superposition, the solution to the above-problem can be attained in the following two steps:
1.
 the unperturbed problem (denoted with the apex ‘1’), where the homogeneous, infinite domain (without
inclusions) is subject to the homogeneous incremental displacement gradient v

ð1Þ

1;1 ¼ �v
ð1Þ

2;2 and v
ð1Þ

1;2 ¼

v
ð1Þ

2;1 ¼ 0;

2.
 the non-trivial problem (denoted with the apex ‘
’) where the incremental displacement gradient is

prescribed to assume—along the stiffener line S—opposite values than those calculated at step 1.
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Fig. 8. Fracture mode of sample S4 subject to a tensile load orthogonal to the inclusion. The aluminum lamina is visible in the upper part,

while the two near-tip details are shown in the central part. A ‘post-mortem’ view of the fracture is shown in the lower part, where the two

pieces of the sample have been separated. Note the initial inclinations (approximately p=4) of the fractures near the aluminum lamina tips

(photos taken at the University of Trento with a Nikon D200 digital camera).
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For both problems, the solution is known once the associated stream function is obtained, as kinematic and
static quantities can be easily derived from it.

5.1. Unperturbed problem

The incremental nominal stress _tð1Þij is homogeneous in the unperturbed problem, with principal
components matching exactly the applied far-field incremental displacement gradient. Taking 2xaZ for
simplicity, the constitutive equations (1) allow us to relate the displacement gradient and the incremental
pressure in the form

v
ð1Þ

1;1 ¼ �v
ð1Þ

2;2 ¼
_tð1Þ11 � _t

ð1Þ

22

2mð2x� ZÞ
; _tð1Þ12 ¼ _tð1Þ21 ¼ 0,

_pð1Þ ¼
_tð1Þ11 ð2xþ k � ZÞ þ _tð1Þ22 ð2x� k � ZÞ

2ð2x� ZÞ
, ð40Þ

so that we can equivalently prescribe remote incremental nominal stresses instead of incremental displacement
gradient components.

Fulfilment of Eq. (40)1 requires a stream function cð1Þ depending only on z1 and z2, which in the EI regime
takes the form

cð1Þðz1; z2Þ ¼ �
v
ð1Þ

2;2

4b1b2
Im½b2z

2
1 þ b1z22�, (41)

while in the EC regime

cð1Þðz1; z2Þ ¼
v
ð1Þ

2;2

4ða2 þ b2Þ
faRe½z21 � z22� � b Im½z21 þ z22�g. (42)

The trivial cases when _tð1Þ11 ¼ _tð1Þ22 ¼ _tð1Þ and 2x ¼ Z are not considered here for conciseness.

5.2. Non-trivial problem

The constraint introduced by the stiffener imposes the fulfilment of conditions (11). Therefore, the
displacement gradient components v1;1 and v2;1, of opposite sign to that imposed in the unperturbed problem,
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are applied on the line representing the lamellar inclusion, namely

�v
ð
Þ

1;1ðx1; 0Þ ¼
� �

v
ð
Þ

2;2ðx1; 0Þ ¼ �v
ð1Þ

2;2 if jx1jol,

v
ð
Þ

2;1ðx1; 0Þ ¼ �v
ð1Þ

2;1 ðx1; 0Þ ¼ 0; 8 x1 2 R. ð43Þ

Note that v2;11 ¼ 0 is now equivalent to v2;1 ¼ 0, due to Mode I symmetry.
The solution is derived separately for the two EC and EI regimes (beginning with EC). We introduce

functions F 1ðz1Þ and F 2ðz2Þ, so that the stream function cð
Þ is given by

cð
Þðz1; z2Þ ¼ Re
X2
j¼1

FjðzjÞ

" #
. (44)

Consequently, the displacement gradient becomes

v
ð
Þ

1;1ðz1; z2Þ ¼ Re
X2
j¼1

OjF
00
j ðzjÞ

" #
; v

ð
Þ

2;1ðz1; z2Þ ¼ �Re
X2
j¼1

F 00j ðzjÞ

" #
. (45)

The effects of the applied boundary conditions on the inclusion segment decay and vanish at infinity, so that,
from Eq. (45) we get

lim
jzj j!þ1

F 00j ðzjÞ ¼ 0 ðj ¼ 1; 2Þ. (46)

Moreover, Eqs. ð43Þ2 and ð45Þ2 provide

v
ð
Þ

2;1ðx1; 0Þ ¼ �
F 00þ1 ðx1Þ � F 00�1 ðx1Þ

2
�

F 00þ2 ðx1Þ � F 00�2 ðx1Þ

2
¼ 0; 8 x1 2 R, (47)

(where apices þ and � denote the upper and lower stiffener surface, respectively) which yields the key
property

ðF 001ðx1Þ þ F 002ðx1ÞÞ
þ
¼ ðF 001ðx1Þ þ F 002ðx1ÞÞ

�; 8 x1 2 R. (48)

Condition (48) implies that the function F 001ðx1Þ þ F 002ðx1Þ is continuous across the branch cut, so that it results
analytic in the whole Ox1x2 plane, and, assuming also boundedness, it results constant from Liouville’s
theorem. Such a constant is zero since at infinity the function must be zero, see Eq. (46). As a conclusion,
we obtain

F 001ðx1Þ ¼ �F 002ðx1Þ; 8x1 2 R. (49)

The set of equation (49), plus Eqs. (15), (14), and (45) allow us to represent function v
ð
Þ

1;1 on S in the form

v
ð
Þ

1;1ðx1; 0Þ ¼ �2aRe½F 001ðx1Þ� þ ðb1 � b2ÞRe½iF 001ðx1Þ�, (50)

so that condition ð43Þ1 takes the form

�2aRe½F 001ðx1Þ� þ ðb1 � b2ÞRe½iF 001ðx1Þ� ¼ v
ð1Þ

2;2 if jx1jol. (51)

5.2.1. EC regime

In the EC regime, b1 ¼ b2, so that Eq. (51) simplifies to

�2aRe½F 001ðx1Þ� ¼ v
ð1Þ

2;2 if jx1jol. (52)

The following Riemann–Hilbert problem can be formulated for function F 001ðzÞ on the rectilinear
segment S, i.e.

F 00þ1 ðx1Þ þ F 00�1 ðx1Þ ¼ �
v
ð1Þ

2;2

a
if jx1jol, (53)
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whose solution is given by Muskhelishvili (1953, Section 110) in the form

F 001ðz1Þ ¼ �
v
ð1Þ

2;2

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q 1

2pi

Z l

�l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � l2

p
t� z1

dtþ Pðz1Þ

" #
, (54)

where Pðz1Þ is a polynomial that must be zero for the condition (46). The solution is (Carloni et al., 2002)

F 001ðz1Þ ¼ �
v
ð1Þ

2;2

2a
1�

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q
0B@

1CA, (55)

and through Eq. (49)

F 002ðz2Þ ¼
v
ð1Þ

2;2

2a
1�

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q
0B@

1CA. (56)

By integration, Eq. (44)1 provides c
ð
Þ within the EC regime. In this regime, the stream function c writes

c ¼ cð
Þ þ cð1Þ ¼ �
v
ð1Þ

2;2

4a
Re b2

z21 � z22

a2 þ b2
� z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q
þ z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q264
8><>:

þl2 ln
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q
0B@

1CA
375þ Im ab

z21 þ z22

a2 þ b2

� �9>=>;. ð57Þ

The incremental displacement field and its gradient can be calculated from Eqs. (5) and are reported in
Appendix C. Eqs. (1) and (4) provide the incremental nominal stress field in the form

_p� _pð1Þ ¼ �
mv
ð1Þ

2;2

2a
�a½2ð1� kÞb2 þ k�Re 2�

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375

8><>:
�b½2ð1� kÞa2 � k� Im

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375
9>=>;,

_t11 � _pð1Þ ¼ �
mv
ð1Þ

2;2

2a
ðbdþ waÞRe

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q þ
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375

8><>:
�ðad� wbÞ Im

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375� 2a½2ð1� kÞb2 þ k�

9>=>;,

_t22 � _pð1Þ ¼ �
mv
ð1Þ

2;2

2a
ðbd� waÞRe

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q þ
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375

8><>:
�ðadþ wbÞ Im

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375� 2a½2ð1� kÞb2 þ k�

9>=>;,
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_t12 ¼ �
mv
ð1Þ

2;2

2a
ðwb2 � wa2 þ 2abdÞRe

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375

8><>:
�ðda2 � db2 þ 2abwÞ Im

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q þ
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375
9>=>;,

_t21 ¼ �
mv
ð1Þ

2;2

2a
wRe

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q �
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375� d Im

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q þ
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � l2
q

264
375

8><>:
9>=>;, (58)

where _pð1Þ is given by Eq. (40)3 and the parameters w and d are defined by Eqs. (23).
Employing the definition of _K ð�ÞI given by Eq. (30)1, we obtain

_K ð�ÞI ¼ 2mv
ð1Þ

2;2

ffiffiffiffiffi
pl
p

, (59)

while, if we use the definition (29)1 of incremental stress intensity factor (instead of definition (30)1), we get

_K I ¼ �mv
ð1Þ

2;2

ffiffiffiffiffi
pl
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

� 1þ Z
h i

. (60)

Note that, due to the different normalizations, both the definitions (59) and (60) differ from that employed
by Cristescu et al. (2004) for cracks and by Ballarini (1990) for stiffeners in the infinitesimal theory.
Interestingly, the incremental stress intensity factor (59) [differently from the other definition (60)] is
independent of the prestress, so that it coincides with the corresponding stress intensity factor of the
infinitesimal theory.

We note that the full-field solution (58) matches the asymptotic one (28), (32) when both z1 and z2

approach l. Moreover, all terms of the type zn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2n � l2

q
ðn ¼ 1; 2Þ become leading order contributions,

behaving as 1=
ffiffi
r
p

near the line tip.
5.2.2. EI regime

In the EI regime, a ¼ 0, so that Eq. (51) becomes

ðb1 � b2ÞRe½iF 001ðx1Þ� ¼ v
ð1Þ

2;2 if jx1jol, (61)

providing the following Riemann–Hilbert problem in terms of F 001ðzÞ on S

F 00þ1 ðx1Þ þ F 00�1 ðx1Þ ¼ �i
2v
ð1Þ

2;2

b1 � b2
if jx1jol. (62)

The solution of Eq. (62) corresponds to

F 001ðz1Þ ¼ �i
v
ð1Þ

2;2

b1 � b2
1�

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q
0B@

1CA, (63)

while Eq. (49) provides

F 002ðz2Þ ¼ i
v
ð1Þ

2;2

b1 � b2
1�

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q
0B@

1CA. (64)
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Analogously to the EC regime, the stream function cð
Þ can be obtained integrating equations (63) and (64)
and employing Eq. (44)2. This gives

c ¼ cð1Þ þ cð
Þ ¼ �
v
ð1Þ

2;2

2ðb1 � b2Þ
Im ðb1 þ b2Þ

b1z22 � b2z21
2b1b2

þ z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � l2

q264
�z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q
þ l2 ln

z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � l2

q
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The incremental displacement field and its gradient are reported in Appendix C. Eqs. (1) and (4) lead to the
incremental nominal stress, whose components can be expressed in terms of parameters en, wn, and dn ðn ¼ 1; 2Þ
(see Eq. (B.2)) as
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The incremental stress intensity factor _K ð�ÞI can be readily computed using Eq. (30)1 to yield, for the EI
regime, the same expression, Eq. (59), obtained for the EC regime. If we use the definition (29)1 of incremental
stress intensity factor instead of definition (30)1, we again obtain Eq. (60), which therefore results also valid
within the EI regime.

We conclude this section showing results relative to the stress fields near a stiffener as functions of the
prestress (entering the formulation through dimensionless parameters Z and k), for a Mooney–Rivlin material,
x ¼ 1. In particular, level sets of the in-plane principal Cauchy stress increments difference, _s1 � _s2, have been
reported in Fig. 1 for null prestress, to compare with the photoelastic results. Further results with prestress
levels (Z ¼ k has been taken) up to near the elliptic boundary (EI/P) are reported in Fig. 9.

We may note from the figure that the incremental stress fields are strongly affected by the prestress (in a way
which has been, in part, confirmed by our experiments, see Appendix A), so that near the EI/P boundary
ðk ¼ �0:985Þ localized deformations become visible, an issue that will be addressed in detail in Part II of
this article.
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Fig. 9. Level sets of in-plane principal Cauchy stress increments difference, _s1 � _s2, at four prestress levels.
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6. Conclusions

Asymptotic near-tip, Mode I and II fields, and a Mode I full-field solution have been obtained in this article
for a thin, rigid line inclusion (a stiffener) embedded in an infinite, incompressible and orthotropic elastic
medium, homogeneously prestressed and prestrained, subject to incremental non-uniform stress.

The solutions evidence interesting features even when the prestress is null, such as the fact that the material
may not fail following the maximum hoop-stress criterion typical of fracture mechanics. Rather, for tensile
deformations aligned parallel to the stiffener, a crack forms orthogonally to the maximum radial stress (which
is aligned parallel to the stiffener so that the fracture is orthogonal to it), while for a tensile loading orthogonal
to the inclusion the failure mode corresponds to a crack inclined of p=4 that nucleates on the inclusion surface
and promotes delamination of the lamina and global Mode I fracture of the specimen. All these features have
been confirmed by photoelastic and fracture experiments on two-component epoxy resin specimen.

The obtained solutions show that all incremental fields result to be strongly influenced by the prestress,
opening the possibility of investigation of shear band nucleation and growth. Although limited to the
assumption that the prestress is uniform, our analyses, presented in Part II of this paper, show that the stress/
deformation incremental fields at shear band formation are similar to available experimental results.
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Appendix A. Experiments on two-component epoxy resin specimens embedding an aluminum thin platelet

A commercial two-part epoxy resin (Crystal Resins by Gedeo, 305 Avenue du pic de Bretagne, 13420
Gemenos, France), commonly used for producing highly transparent non-yellowing casts has been employed
to produce an elastic material enclosing a thin rigid lamina, to be used with transmission photoelasticity.
Samples made with this resin have been de-moulded after 12 h and tested after at least one week. To realize the
stiffener, we have used a 0.3mm thick aluminum sheet, which its superficial rugosity has been improved to
enhance adhesion, using a fine (P 180) sandpaper. Seven samples have been produced, five of which are shown
in Fig. 10.

The square 100mm� 100mm� 18mm sample (S3 in Fig. 10) has a 44mm� 18mm� 0:3mm aluminum
platelet embedded and has been produced following the supplier’s instructions, namely, mixing one part of
hardener B with two parts of resin A. When solid, after 10 days, the sample has been cut to obtain parallel
edges and finally polished.

The thick rectangular 195mm� 94:3mm� 10:3mm sample (S1) has a 20mm� 10:3mm� 0:3mm
aluminum platelet embedded and has been produced by mixing one part of hardener B with one part of
resin A. In this way, a very soft material (deformed 40% longitudinally under a 0.196MPa uniaxial mean
stress at failure) has been obtained by direct casting, without any polishing.

All the other samples have been produced by mixing one part of hardener B with 2.25 parts of resin A.
The dog-bone shaped sample (S2), of thickness equal to 10.6mm and transverse width of 39.5mm, contains

a 30mm� 10:6mm� 0:3mm aluminum platelet. This sample has been cut from a circular disk sample of
115mm diameter and finally polished.

The two rectangular 340mm� 100mm� 3:2mm samples (S4, S5) contain a 15mm� 3:2mm� 0:3mm
aluminum platelet (parallel to the long sides in one sample and orthogonal in the other) and have been
obtained by direct casting into a mould, without any further treatment.
Fig. 10. The two-component epoxy resin samples with lamellar (aluminum) inclusions used in our tests. A rectangular thick sample (S1),

a dog-bone shaped sample (S2), a square sample (S3), two rectangular thin samples (S4, S5) are shown (all photos have been taken with

a Nikon D200 digital camera at the University of Trento).
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The sample S3 has been tested under compression orthogonal to the long edge of the stiffener by imposing a
vertical displacement, obtained at constant velocity of 0.1mm/min (a Galdabini PMA 10 universal testing
machine has been used). After a photoelastic investigation of the stress state has been conducted at low stress,
we have tried to break the sample in compression, to investigate cracking. The material has revealed a
remarkable ductile behaviour and the sample suffered an out-of-plane buckling. Therefore, the test was
stopped after a large strain had occurred and before the final rupture. Interestingly, strain localization near the
edges of the stiffener emerged and was made visible by reflected bright light used to illuminate the sample. One
of the photos taken to reveal localization is included in Part II of this article.

The dog-bone shaped sample (S2) has been tested under tensile stress parallel to the long edge of the
stiffener, by imposing a vertical displacement, obtained at constant velocity of 0.1mm/min (a Galdabini PMA
10 universal testing machine has been used). Photoelastic investigation has been performed up to near failure
stress. The sample failed at a mean stress near 36MPa. Before failure, an out-of-plane delamination started
near the lower edge of the stiffener, due to Poisson effect. Subsequently, two nearly simultaneous fractures
started to grow horizontally and perpendicularly to the stiffener (Fig. 2). Initial propagation was slow, so that
a few minutes elapsed from when a first fracture was visible and the photo on the left in Fig. 2 was taken
(so that 30 camera shots were manually taken when a fracture was already visible, before the photo on the left
in Fig. 2 was taken). About a minute elapsed and 13 camera shots were taken between the photos shown
on the left and on the centre were taken. No photos were taken between those shown centrally and on the right
in Fig. 2.

The three rectangular samples (S1, S4, S5) have been loaded through the imposition of dead loadings, with
tensile stresses parallel to the long sides. By means of a plane polariscope, a photoelastic investigation was
performed on these samples at small stress (near 4MPa for S4 and S5, and 11 kPa for S1) giving the best
quality photos, approximately identical for the three tests (Fig. 11). In particular, the isochromatic fringe
patterns shown in Fig. 1 have been obtained on the soft, 10.3mm thick rectangular sample (S1). Additional
results are reported in Fig. 11, where, in particular, photos reported on the left and central have been taken on
sample (S1), while the photo reported on the right has been taken on the 3.2mm thick sample (S5).

In general, we note that plane strain deformation prevails near the stiffener, while plane stress dominates at
a sufficient distance from it, particularly in samples S1 and S2. The solution for a stiffener in plane stress and
plane strain isotropic (compressible) elasticity can be derived taking the limit of null semi-axes ratio for the
solution of a rigid elliptical inclusion in an infinite elastic sheet reported by Muskhelishvili (1953). This
solution provides contour plots of the in-plane principal stress difference qualitatively similar to the plane
strain case and also both solutions do not depend much on Poisson’s ratio. This explains the very good match
between the theoretical results—referred to plane strain incompressible material—and the experiments shown
in Fig. 1.

Although the rectangular samples provided the best photoelastic results, these analyses have been
performed on all samples and always gave similar results. At very high stress, near failure under tensile stress
for the dog-bone shaped specimen, the shape of the photoelastic contours evidenced details which might be
better interpreted with our results for a prestressed material. However, since we had only a few of these data,
we decided not to report them.
Fig. 11. Isochromatic fringe patterns captured in the photoelastic tests. Left: sample S1 at 51 kPa tensile mean stress (parallel to the

stiffener); centre: sample S1 at 11 kPa tensile mean stress (parallel to the stiffener); right: sample S5 at 4.3MPa tensile mean stress

(orthogonal to the stiffener). In the left-hand side picture the axes of polarization are parallel and orthogonal to the stiffener, while these

are rotated of p=4 clockwise with respect to the other two.
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Appendix B. Asymptotic fields in the EI regime

Roots Oj ðj ¼ 1; . . . ; 4Þ take the form (15) in the EI regime. The asymptotic expansions of the incremental
quantities may be obtained by substituting the expression of the stream function (18)2 in Eqs. (5), (1), and (4)
(see also Radi et al., 2002) to yield

v1 ¼ �
4g _K
3m

ffiffiffi
p
p

X2
n¼1

bn Im½Anwg�1
n �,

v2 ¼ �
4g _K
3m

ffiffiffi
p
p

X2
n¼1

Re½Anwg�1
n �,

_t11 ¼ �
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
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enbn Im½Anwg�2
n �,
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3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

wnbn Im½Anwg�2
n �,

_t12 ¼ �
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

wnb
2
n Re½Anwg�2

n �,

_t21 ¼ �
4g _K
3
ffiffiffi
p
p ðg� 1Þ

X2
n¼1

en Re½Anwg�2
n �,
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ffiffiffi
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n �, (B.1)

where

en ¼ 1� Zþ ð1� kÞb2n; wn ¼ 4x� 1� Z� ð1� kÞb2n,

dn ¼ 2x� 1� k � ð1� kÞb2n ðn ¼ 1; 2Þ. (B.2)

B.1. Mode I

Through Eq. (15) and the definition of wj , Mode I symmetry conditions (20) write

v1ðw1;w2Þ ¼ v1ðw1;w2Þ; v2ðw1;w2Þ ¼ �v2ðw1;w2Þ, (B.3)

which imply a1 ¼ a2 ¼ 0, so that An ¼ ibn; where n ¼ 1; 2.
The boundary conditions (11), applied for Wn ¼ p, provide a homogeneous system, which (for b1ab2)

admits a non-trivial solution if and only if g is 3
2
. Note that the condition b1ab2 corresponds to Eq. (27), which

sets the boundary between the two Elliptic regimes. For g ¼ 3
2
, the relation b1 þ b2 ¼ 0 is obtained.

The components of the angular functions defined by Eqs. (31) for a generic Mode I take the following
analytic expressions, valid for W 2 ½0;p�,

o1ðWÞ ¼ �2
X2
n¼1

bnbn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðWÞ þ cos W

p
,
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where

gnðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 Wþ b2n sin

2 W
q

. (B.5)

The normalization condition (34) provides b1 and b2 as

bn ¼
1

2
ffiffiffi
2
p
ðbn � bmÞ

ðn;m ¼ 1; 2; manÞ, (B.6)

where the equalities en ¼ wm (n;m ¼ 1; 2, man), obtained from Eqs. (B.2), have been used.
B.2. Mode II

Through Eqs. (15) and the definition of wj, Mode II symmetry conditions Eqs. (21) write

v1ðw1;w2Þ ¼ �v1ðw1;w2Þ; v2ðw1;w2Þ ¼ v2ðw1;w2Þ, (B.7)

that imply b1 ¼ b2 ¼ 0, and, as a consequence, An ¼ an, where n ¼ 1; 2. The boundary conditions provide a
homogeneous system which admits non-trivial solution for g ¼ 3

2
; the same system defines the constraint

a1b1 þ a2b2 ¼ 0. (B.8)

The functions defined by Eqs. (38), valid for W 2 ½0;p�, now become
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From the normalization condition o2ð0Þ ¼ 4 we obtain the following condition for the constants a1 and a2:

an ¼
bm

2
ffiffiffi
2
p
ðbn � bmÞ

ðn;m ¼ 1; 2; manÞ. (B.10)

Appendix C. Kinematical fields for the full-field solution

In the EC regime, incremental displacements and its gradient are
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while in the EI regime
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