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1 Introduction

The solution for an inclined crack loaded incrementally under mode I and mode
II in a uniformly prestressed, orthotropic incompressible elastic material is ob-
tained together with the incremental energy release rate. The particular cases
when the crack is aligned parallel to one of the prestress principal axes and
when the crack is inclined, but the prestress is absent, are also explicitly ob-
tained. The effects of prestress are explored in detail on crack fields and growth
conditions.

The above results are preliminary to the solution of a shear band, modeled
according to the weak line model presented in the paper ‘The unrestrainable
growth of a shear band in a prestressed material’, loaded under incremental
mode II (while mode I loading leaves the material unperturbed) and embedded
in a uniformly prestressed, orthotropic and incompressible nonlinear elastic
material.

2 Incremental constitutive equations for incompress-
ible nonlinear elasticity

According to the Biot (1965) theory, the response of a nonlinear elastic, incom-
pressible and uniformly deformed material subjected to an incremental loading
is expressed in terms of the nominal (unsymmetrical) stress increment ṫ, related
to the gradient of incremental displacement ∇v (satisfying the incompressibility
constraint tr∇v = 0) through the linear relation

ṫ = K[∇vT ] + ṗ I, (1)
1Corresponding author: Davide Bigoni fax: +39 0461 882599; tel.: +39 0461 882507;

web-site: http://www.ing.unitn.it/∼bigoni/; e-mail: bigoni@ing.unitn.it.
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where T denotes the transpose, ṗ is the incremental in-plane mean stress and
the components of constitutive fourth-order tensor K (possessing the major
symmetry Kijhk = Khkij) are:

K1111 = μ(ξ − k − η), K1122 = −μ ξ, K1112 = K1121 = 0,

K2211 = −μ ξ, K2222 = μ(ξ + k − η), K2212 = K2221 = 0,

K1212 = μ(1 + k), K1221 = K2112 = μ(1 − η), K2121 = μ(1 − k).

(2)

The components of the constitutive fourth-order tensor K depend on the current
state of stress (expressed through the principal components of Cauchy stress,
σ1 and σ2) and material response to shear (μ for shear parallel and μ∗ for shear
inclined at π/4 with respect to σ1) describing orthotropy (aligned parallel to
the current principal stress directions), see Bigoni and Capuani (2002, 2005)
for details, through the dimensionless quantities:

ξ =
μ∗
μ
, η =

σ1 + σ2

2μ
, k =

σ1 − σ2

2μ
. (3)

Positive definiteness of K

The Hill exclusion condition for bifurcation (Hill, 1958) is the condition of
positive definiteness of the constitutive fourth-order tensor K [Hill and Hutchin-
son, 1975, their eqn. (3.9)]. Assuming μ > 0, in terms of dimensionless con-
stants (3), this condition becomes

0 < η < 2ξ,
k2 + η2

2η
< 1, (4)

defining a region in the space ξ, k and η, which bound has been reported in
Fig. 1 for different values of η/k.

Regime classification
Since the material response described by eqn. (1) is incompressible, we

can introduce a stream function ψ(x1, x2), with the property (where a comma
means differentiation with respect to the corresponding spatial variable)

v1 = ψ,2, v2 = −ψ,1, (5)

so that the incompressibility constraint is automatically satisfied. Assuming
zero body forces, the elimination of ṗ in the incremental equilibrium equations
(ṫij,i = 0) gives the fourth-order partial differential equation

(1 + k)ψ,1111 + 2(2ξ − 1)ψ,1122 + (1 − k)ψ,2222 = 0, (6)

derived by Biot [1965, pp. 193, his eqn. (3.7), see also Hill and Hutchinson,
1975, their eqn. (3.3)].

Following Lekhnitskii (1981), Guz (1999), Cristescu et al. (2004), Radi et
al. (2002) and Dal Corso et al. (2008), a solution of (6) can be represented in
terms of the analytic function F

ψ(x1, x2) = F (x1 + Ωx2), (7)
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where Ω is a complex constant satisfying the biquadratic equation obtained
inserting representation (7) in eqn. (6)

1 + k + 2(2ξ − 1)Ω2 + (1 − k)Ω4 = 0. (8)

The four roots Ωj (j = 1, . . . , 4) of eqn. (8) satisfy

Ω2
j =

1 − 2ξ + (−1)jΛ
1 − k

, (9)

where
Λ =

√
4ξ2 − 4ξ + k2, (10)

and are real or complex depending on the values of ξ and k. In compact form,
we write

Ωj = αj + iβj , j = 1, . . . , 4, (11)

and define the four complex variables

zj = x1 + Ωjx2 = x1 + αjx2 + iβjx2 j = 1, . . . , 4, (12)

where i =
√−1 is the imaginary unit and αj = Re[Ωj] and βj = Im[Ωj ].

Employing eqns. (7) and (12), the general solution of the differential eqn.
(6) can be written as

ψ(x1, x2) =
4∑

j=1

Fj(zj). (13)

The roots Ωj, defined by eqn. (9), change their nature according to the val-
ues of parameters ξ and k, so that the differential equation (6) can be classified
as reported by Dal Corso et al. (2008). The regime classification in the k − ξ
plane has been given by Radi et al. (2002) and is sketched in Fig. 1.

In the elliptic imaginary regime (EI), defined as

k2 < 1 and 2ξ > 1 +
√

1 − k2, (14)

we have four imaginary conjugate roots Ωj, so that

α1 = α2 = 0,
β1

β2

}
=

√
2ξ − 1 ±

√
4ξ2 − 4ξ + k2

1 − k
> 0, (15)

while in the elliptic complex regime (EC), defined as

k2 < 1 and 1 −
√

1 − k2 < 2ξ < 1 +
√

1 − k2, (16)

we have four complex conjugate roots Ωj, so that

β = β1 = β2

α = −α1 = α2

}
=

√√
1 − k2 ± (2ξ − 1)

2(1 − k)
> 0. (17)
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Specific cases of material behaviour
The assumption of a specific material model determines the relation between

ξ and k. For instance, a Mooney-Rivlin material coincides with a neo-Hookean
material for plane isochoric deformations, so that parameters k and ξ become
(where λ is the logarithmic stretch, representing a prestrain measure)

k =
λ2 − λ−2

λ2 + λ−2
, ξ = 1, (18)

while for a J 2–deformation theory material (Hutchinson and Neale, 1979), par-
ticularly suited to analyse the plastic branch of the constitutive response of
ductile metals, we have

k =
λ4 − 1
λ4 + 1

, ξ =
N(λ4 − 1)

2(ln λ) (λ4 + 1)
, (19)

where N is the hardening exponent. The curve in the ξ versus k plane described
by eqn. (19) for N = 0.3 is reported in Fig. 2 of the paper.

Shear bands inclination
At the EC/H boundary two shear bands become simultaneously possible,

their inclinations are given by the angles ±ϑ0 between the shear band and the
x1–axis and solution of (Hill and Hutchinson, 1975)

cot2 ϑ0 =
1 + 2 sign(k)

√
ξ (1 − ξ)

1 − 2ξ
. (20)

At the EI/P boundary, we have only one shear band possible aligned parallel
to the x1–axis (x2–axis), when k = 1 (k = −1)

ϑ0 = 0, for k = 1, or ϑ0 =
π

2
, for k = −1. (21)

Surface bifurcation
Surface instability occurs [Needleman and Ortiz, 1991, their eqn. (48)] when

4ξ − 2η =
η2 − 2η + k2

√
1 − k2

, (22)

which, in the particular case of stress parallel to the free surface x1 = 0 (η = k),
becomes

ξ =
k

2

(
1 −

√
1 − k

1 + k

)
. (23)

Surface bifurcation, eqn. (22), and the Hill exclusion condition, eqn. (4),
are reported in Fig. 1 for different values of η/k .

In our model of shear band, a sliding surface abruptly (but affecting only
incremental fields) forms when the thin layer of material representing the shear
band touches the elliptic boundary, while in a refined modelling, a weak thin
layer of material should approach the elliptic boundary becoming incremen-
tally less and less stiff in a continuous way. The abrupt formation of a sliding
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Figure 1: Surface bifurcation for η = {4k, 2k, k/4, k/2} and the Hill exclusion condition,
eqn. (4), in the ξ = μ∗/μ versus k = (σ1 − σ2)/2 parameter space, reported with the regime
classification.

surface within an infinite solid may, depending on the stress conditions, gen-
erate a sudden ‘spurious’ interfacial instability, so that in this condition our
shear band model becomes oversimplified. Therefore, the model has to be em-
ployed only in situations where surface instabilities are a-priori excluded until
the elliptic boundary is met, a circumstance that can be attained employing the
Hill (1958) exclusion condition, see also Hill and Hutchinson [1975, their eqn.
(3.9)]. However, this condition is so general that all points of the EC/H and
EI/P boundaries can be explored, by taking k >0 and selecting appropriate
values for the prestress parameter η, as can be noted from Fig. 1.

3 Finite-length crack in a prestressed material

A homogenously prestressed and prestrained, incompressible elastic infinite
plane is considered, characterized by the constitutive equation (1) of incremen-
tal, incompressible, orthotropic elasticity, containing a crack of current length
2l, taken parallel to the x̂1-axis in the x̂1–x̂2 reference system, and loaded at
infinity by a uniform nominal stress increment t̂∞2n, where n = 1 corresponds to
mode II and n = 2 to mode I loading, see Fig. 2.

Obviously, the crack faces cannot be free of tractions, since a dead loading
is required to ‘provide’ the prestress state (with principal Cauchy components
σ1 and σ2, assumed aligned parallel to the x1–x2 reference system, rotated at
an angle ϑ0 with respect to the x̂1–x̂2 system). An interesting exception to this
rule occurs when the crack is aligned parallel to the x1-axis and the prestress
is aligned parallel to the crack surfaces, namely when the x̂1–x̂2 and x1–x2

systems coincide, i.e. ϑ0 = 0, and σ2 = 0, corresponding to η = k. This
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Figure 2: Finite-length (2l) crack in a prestressed, orthotropic material inclined at an angle
ϑ0 (positive when anticlockwise) with respect to the orthotropy axes x1 and x2.

situation has been considered by Guz (1999, and references quoted therein),
Cristescu et al. (2004) and Radi et al. (2002, in the near-tip asymptotic limit).
The case of a generic inclination ϑ0, has never been treated in the case of a
prestressed material, but it is well-known in linear, infinitesimal, anisotropic
elasticity (Savin, 1961; see also Sih and Liebowitz, 1968).

Solution to the above-formulated crack problem is obtained by superimpos-
ing the trivial, unperturbed solution to the perturbation induced by the crack,
the latter denoted with the apex ◦.

The unperturbed solutions are obtained defining the uniform nominal stress
field in the x̂1–x̂2 reference system

t̂22 = t̂∞22, t̂11 = 0, t̂12 = t̂21 = t̂∞21, (24)

so that t̂∞21 = 0 (t̂∞22 = 0) for mode I (mode II).
The nominal stress increment, incremental displacement and its gradient in

the x̂1–x̂2 reference system can be obtained through a rotation of the compo-
nents in the prestress principal reference system x1–x2. Since the two systems
are rotated at an angle ϑ0 (taken positive when anticlockwise), we have

x̂ = QTx, [Q] =
[

cosϑ0 sinϑ0

− sinϑ0 cosϑ0

]
, (25)

so that the nominal stress increment, incremental displacement and its gradient
can be expressed in the x̂1–x̂2 reference system as

t̂ = QT ṫQ, v̂ = QTv, ∇̂v̂ = QT∇vQ, (26)

while the constitutive equation (1) transforms to

t̂ = K̂[∇̂v̂T ] + ṗ I, (27)

where the transformed fourth-order tensor K̂ is given by

K̂ijhk = QliQmjKlmnoQnhQok. (28)

Note that the above definition (24) of mode I and II loadings is fully mean-
ingful only when the constitutive equations (1) are positive defined, so that the
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Hill exclusion condition (4) holds true. For a non-positive definite constitu-
tive equation, definition (24) would be better changed to one concerning the
components of the incremental displacement gradient.

Assuming that condition (4) holds true, we can directly obtain from eqns.
(1), (2) and (26)1 the components of the incremental displacement gradient and
the incremental in-plane mean stress in the x1–x2 reference system

ṗ =
t̂∞22
2

− μkv2,2,

v2,2 = −v1,1 =
t̂∞22 cos 2ϑ0 − 2t̂∞21 sin 2ϑ0

2μ(2ξ − η)
,

v1,2 = −(k + η)
(
t̂∞22 sin 2ϑ0 + 2t̂∞21 cos 2ϑ0

)
2μ(k2 − 2η + η2)

,

v2,1 =
(k − η)

(
t̂∞22 sin 2ϑ0 + 2t̂∞21 cos 2ϑ0

)
2μ(k2 − 2η + η2)

.

(29)

The components of the incremental displacement gradient in the x̂1–x̂2 reference
system can be obtained through a rotation of eqns. (29), by employing eqn.
(26)3.

It should be noted from eqns. (29) that in the absence of prestress, k = η =
0, eqns. (29) fully determine the incremental displacement gradient. However,
in this case, the incremental stress is only related to the symmetric part of the
incremental displacement gradient, so that an arbitrary incremental rotation
can be added without altering the state of stress, a circumstance not possible
when the prestress is different from zero. In other words, when the prestress is
present, loading (24) completely defines the incremental displacement gradient
(and incremental mean stress) through eqns. (29), so that incremental rigid
body rotations remain determined.

3.1 Finite-length crack parallel to an orthotropy axis

Before proceeding with the solution of the inclined crack, it becomes instructive
to begin with the simple case of null inclination, in which ϑ0 = 0, so that the
orthotropy axes are aligned parallel and orthogonal to the x1–x2 axes, defining
the prestress directions and coinciding with the x̂1–x̂2 axes.

The perturbed solution is derived separately for the two EI and EC regimes
(beginning with EI). The stream function ψ◦, eqn. (5), can be represented in
the form (note that the summation ranges between 1 and 2, since the Ωj’s are
in conjugated pairs in the elliptic regime)

ψ◦(z1, z2) = Re

⎡⎣ 2∑
j=1

Fj(zj)

⎤⎦ , (30)

where zj = x1 +Ωjx2, with Ωj given by eqn. (9), so that the displacement field
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becomes

v◦1(z1, z2) = Re

⎡⎣ 2∑
j=1

ΩjF
′
j(zj)

⎤⎦ , v◦2(z1, z2) = −Re

⎡⎣ 2∑
j=1

F ′
j(zj)

⎤⎦ , (31)

and its gradient can be written as

v◦1,1(z1, z2) = −v◦2,2(z1, z2) = Re

⎡⎣ 2∑
j=1

ΩjF
′′
j (zj)

⎤⎦ ,
v◦1,2(z1, z2) = Re

⎡⎣ 2∑
j=1

Ω2
jF

′′
j (zj)

⎤⎦ , v◦2,1(z1, z2) = −Re

⎡⎣ 2∑
j=1

F ′′
j (zj)

⎤⎦ .
(32)

The effects of the applied boundary conditions on the crack surfaces decay to
zero at infinity, so that, from eqns. (32) and the constitutive relation (1) we
obtain

lim
|zj |→+∞

F ′′
j (zj) = 0, j = 1, 2. (33)

Mode I
To recover traction-free crack faces using superposition, the incremental

nominal stress component ṫ∞22 of reversed sign has to be prescribed at crack
surfaces in the perturbed problem, namely for mode I

ṫ◦22(x1, 0±) = −ṫ∞22 ∀ |x1| < l,

ṫ◦21(x1, 0±) = 0, ∀x1 ∈ R.

(34)

From eqns. (34)2 and (32) the following relation can be obtained, holding at
every point x1 of the real axis R

F ′′
2 (x1) = −2ξ − η + Λ

2ξ − η − Λ
F ′′

1 (x1), (35)

where Λ is defined by eqn. (10), while from eqn. (34)1 the condition

ṫ∞22
μ

=
2∑

j=1

Re
{
Ωj

[
4ξ − 1 − η + Ω2

j(1 − k)
]
F ′′

j (x1)
}
, (36)

follows, to hold true along the crack line |x1| < l.
Within the EI regime, eqns. (14), and for mode I, the Riemann-Hilbert

problem:

−β2ε
2
1 − β1ε

2
2

ε2
Re

[
iF ′′

1 (x1)
]

=
ṫ∞22
μ
, ∀ |x1| < l, (37)

where β1 and β2 are defined by eqn. (15) and

εn = 1 − η + (1 − k)β2
n, n = 1, 2, (38)
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has the following solution:

F ′′
j (zj) = (−1)ki

ṫ∞22
μ

εk
β2ε21 − β1ε22

⎛⎝1 − zj√
z2
j − l2

⎞⎠ , j, k = 1, 2, j �= k. (39)

The perturbed stream function becomes

ψ◦ = − ṫ
∞
22

2μ
ε2

β2ε21 − β1ε22

2∑
j=1

(
−ε1
ε2

)j−1

Im
{
z2
j − zj

√
z2
j − l2 + l2 ln

(
zj +

√
z2
j − l2

)}
,

(40)
and the incremental displacements take the form

v◦1 = − ṫ
∞
22

μ

ε2
β2ε21 − β1ε22

Re
[
β1

(
z1 −

√
z2
1 − l2

)
− β2ε1

ε2

(
z2 −

√
z2
2 − l2

)]
,

v◦2 =
ṫ∞22
μ

ε2
β2ε21 − β1ε22

Im
[(
z1 −

√
z2
1 − l2

)
− ε1
ε2

(
z2 −

√
z2
2 − l2

)]
.

(41)
Finally, for mode I in the EI regime, the incremental in-plane mean stress

is given by

ṗ◦ =
ṫ∞22 ε2

β2ε21 − β1ε22

{
ε2β1δ1 − ε1β2δ2

ε2
− Re

[
β1δ1

z1√
z2
1 − l2

− ε1β2δ2
ε2

z2√
z2
2 − l2

]}
,

(42)
where

δn = 2ξ − 1 − k − (1 − k)β2
n, n = 1, 2, (43)

while the incremental nominal stress components are

ṫ◦11 = −ṫ∞22
ε1ε2

β2ε
2
1 − β1ε

2
2

{
β1 − β2 − Re

[
β1

z1√
z2
1 − l2

− β2
z2√
z2
2 − l2

]}
,

ṫ◦22 = −ṫ∞22
{

1 +
ε2

β2ε21 − β1ε22
Re

[
β1ε2

z1√
z2
1 − l2

− ε21β2

ε2

z2√
z2
2 − l2

]}
,

ṫ◦12 = −ṫ∞22
ε2

β2ε21 − β1ε22
Im

[
β2

1ε2
z1√
z2
1 − l2

− ε21β
2
2

ε2

z2√
z2
2 − l2

]
,

ṫ◦21 = −ṫ∞22
ε1ε2

β2ε21 − β1ε22
Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]
.

(44)

Within the EC regime, eqns. (16), and for mode I, the Riemann-Hilbert problem:

2
[
α(δ2 − χ2) + 2βδχ

]
Re

[
F ′′

1 (x1)

χ− iδ

]
=
ṫ∞22
μ
, ∀ |x1| < l, (45)
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where α and β are defined by eqn. (17) and

δ = 2(1 − k)αβ, χ = 2ξ − η, (46)

has the following solution:

F ′′
j (zj) = (−1)k ṫ

∞
22

2μ

χ+ (−1)jiδ

α(δ2 − χ2) + 2βδχ

⎛⎝1 − zj√
z2

j − l2

⎞⎠ , j, k = 1, 2, j �= k. (47)

The perturbed stream function becomes

ψ◦ = − ṫ∞22
4μ[α(δ2 − χ2) + 2βδχ]

2∑
j=1

Re
{[

(−1)jχ+ iδ
]

×
[
z2

j − zj

√
z2

j − l2 + l2 ln
(
zj +

√
z2

j − l2
)]}

,

(48)

and the incremental displacements take the form

v◦1 = − ṫ
∞
22

2μ

1

α(δ2 − χ2) + 2βδχ

{
(αχ− βδ) Re

[(
z1 −

√
z2
1 − l2

)
+

(
z2 −

√
z2
2 − l2

)]
+ (αδ + βχ) Im

[(
z1 −

√
z2
1 − l2

)
−
(
z2 −√

z2
2 − l2

)]}
,

v◦2 = − ṫ
∞
22

2μ

1

α(δ2 − χ2) + 2βδχ

{
χRe

[(
z1 −

√
z2
1 − l2

)
−
(
z2 −

√
z2
2 − l2

)]
+ δ Im

[(
z1 −

√
z2
1 − l2

)
+
(
z2 −√

z2
2 − l2

)]}
.

(49)
Finally, for mode I in the EC regime, the incremental in-plane mean stress is given by

ṗ◦ = − ṫ
∞
22

2

1

α(δ2 − χ2) + 2βδχ

×
{

[(βχ+ αδ)δ + (αχ− βδ)k]

(
2 − Re

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

])

− [(βχ+ αδ)k − (αχ− βδ)δ] Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]}
,

(50)

while the incremental nominal stress components are

ṫ◦11 = − ṫ
∞
22

2

δ2 + χ2

α(δ2 − χ2) + 2βδχ

{
2α− αRe

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]

− β Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]}
,

ṫ◦22 = − ṫ
∞
22

2

{
2 − Re

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]

− β(δ2 − χ2) − 2αδχ

α(δ2 − χ2) + 2βδχ
Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]}
,

ṫ◦12 =
ṫ∞22
2

{
(α2 − β2)(δ2 − χ2) + 4αβδχ

α(δ2 − χ2) + 2βδχ
Re

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]

+
2αβ(δ2 − χ2) − 2δχ(α2 − β2)

α(δ2 − χ2) + 2βδχ
Im

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]}
,

ṫ◦21 =
ṫ∞22
2

δ2 + χ2

α(δ2 − χ2) + 2βδχ
Re

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]
.

(51)

10



Mode II
The reverse of the incremental nominal stress component ṫ∞21 has to be ap-

plied at the crack surfaces in the perturbed mode II solution, namely

ṫ◦22(x1, 0±) = 0, ∀x1 ∈ R,

ṫ◦21(x1, 0±) = −ṫ∞21, ∀ |x1| < l.

(52)

Eqns. (52)1, (32) and eqn. (52)2 provide the two conditions,

F ′′
2 (x1) = −Ω1

Ω2

2ξ − η − Λ
2ξ − η + Λ

F ′′
1 (x1), (53)

holding at every point x1 of the real axis R and

ṫ∞21
μ

=
2∑

j=1

Re
{[

1 − η − Ω2
j(1 − k)

]
F ′′

j (x1)
}
, (54)

holding for |x1| < l.
Within the EI regime, eqns. (14), and for mode II, the Riemann-Hilbert

problem:
β2ε

2
1 − β1ε

2
2

β2ε1
Re

[
F ′′

1 (x1)
]

=
ṫ∞21
μ
, ∀ |x1| < l, (55)

has the following solution:

F ′′
j (zj) = (−1)k

ṫ∞21
μ

βkεj
β2ε21 − β1ε22

⎛⎝1 − zj√
z2
j − l2

⎞⎠ , j, k = 1, 2, j �= k,

(56)
so that the perturbed stream function becomes

ψ◦ =
ṫ∞21
2μ

β2ε1
β2ε21 − β1ε22

2∑
j=1

(
−ε2β1

ε1β2

)j−1

Re
[
z2
j − zj

√
z2
j − l2 + l2 ln

(
zj +

√
z2
j − l2

)]
,

(57)
and the incremental displacements take the form

v◦1 = − ṫ
∞
21

μ

β1β2ε1
β2ε21 − β1ε22

Im
[(
z1 −

√
z2
1 − l2

)
− ε2
ε1

(
z2 −

√
z2
2 − l2

)]
,

v◦2 = − ṫ
∞
21

μ

β2ε1
β2ε21 − β1ε22

Re
[(
z1 −

√
z2
1 − l2

)
− β1ε2
β2ε1

(
z2 −

√
z2
2 − l2

)]
.

(58)
Finally, for mode II in the EI regime, the incremental in-plane mean stress

is given by

ṗ◦ = −ṫ∞21
β1β2ε1

β2ε21 − β1ε22
Im

[
δ1

z1√
z2
1 − l2

− ε2δ2
ε1

z2√
z2
2 − l2

]
, (59)
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while the incremental nominal stress components are

ṫ◦11 = ṫ∞21
β1β2ε1

β2ε
2
1 − β1ε

2
2

Im

[
ε1

z1√
z2
1 − l2

− ε22
ε1

z2√
z2
2 − l2

]
,

ṫ◦22 = −ṫ∞21
β1β2ε1ε2
β2ε

2
1 − β1ε

2
2

Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]
,

ṫ◦12 = −ṫ∞21
β1β2ε1ε2
β2ε21 − β1ε22

{
β1 − β2 − Re

[
β1

z1√
z2
1 − l2

− β2
z2√
z2
2 − l2

]}
,

ṫ◦21 = −ṫ∞21
{

1 − β2ε1
β2ε21 − β1ε22

Re

[
ε1

z1√
z2
1 − l2

− β1ε
2
2

β2ε1

z2√
z2
2 − l2

]}
.

(60)

Within the EC regime, eqns. (16), and for mode II, the Riemann-Hilbert problem:

−2
[
α(δ2 − χ2) + 2βδχ

]
Re

[
F ′′

1 (x1)

(α+ iβ)(χ+ iδ)

]
=
ṫ∞21
μ
, ∀ |x1| < l, (61)

has the following solution:

F ′′
j (zj) = − ṫ

∞
21

2μ

[α− (−1)jiβ][χ − (−1)jiδ]

α(δ2 − χ2) + 2βδχ

⎛⎝1 − zj√
z2

j − l2

⎞⎠ , j = 1, 2, (62)

so that the perturbed stream function becomes

ψ◦ = − ṫ
∞
21

4μ

1

α(δ2 − χ2) + 2βδχ

2∑
j=1

Re
{
[α− (−1)jiβ][χ − (−1)jiδ]

×
[
z2

j − zj

√
z2

j − l2 + l2 ln
(
zj +

√
z2

j − l2
)]}

,

(63)

and the incremental displacements take the form

v◦1 =
ṫ∞21
2μ

α2 + β2

α(δ2 − χ2) + 2βδχ

{
χRe

[(
z1 −

√
z2
1 − l2

)
−
(
z2 −

√
z2
2 − l2

)]

− δ Im
[(
z1 −

√
z2
1 − l2

)
+
(
z2 −

√
z2
2 − l2

)]}
,

v◦2 =
ṫ∞21
2μ

1

α(δ2 − χ2) + 2βδχ

{
(αχ− βδ)Re

[(
z1 −

√
z2
1 − l2

)
+

(
z2 −

√
z2
2 − l2

)]

− (βχ+ αδ) Im
[(
z1 −

√
z2
1 − l2

)
−
(
z2 −

√
z2
2 − l2

)]}
.

(64)
Finally, for mode II in the EC regime, the incremental in-plane mean stress is given by

ṗ◦ =
ṫ∞21
2

α2 + β2

α(δ2 − χ2) + 2βδχ

{
(δ2 − kχ) Re

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]

+ δ(χ+ k) Im

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]}
,

(65)
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while the incremental nominal stress components are

ṫ◦11 =
ṫ∞21
2

α2 + β2

α(δ2 − χ2) + 2βδχ

{
(δ2 − χ2)Re

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]

+ 2δχ Im

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]}
,

ṫ◦22 =
ṫ∞21
2

(α2 + β2)(δ2 + χ2)

α(δ2 − χ2) + 2βδχ
Re

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]
,

ṫ◦12 = − ṫ
∞
21

2

(α2 + β2)(δ2 + χ2)

α(δ2 − χ2) + 2βδχ

{
2α− αRe

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]

− βIm

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]}
,

ṫ◦21 =
ṫ∞21
2

{
−2 + Re

[
z1√
z2
1 − l2

+
z2√
z2
2 − l2

]

− β(δ2 − χ2) − 2αδχ

α(δ2 − χ2) + 2βδχ
Im

[
z1√
z2
1 − l2

− z2√
z2
2 − l2

]}
.

(66)

Incremental stress intensity factors
We note that the incremental stress intensity factors, defined as

K̇I = lim
x1→l+

ṫ22(x1, x2 = 0)√
2π (x1 − l)

, K̇II = lim
x1→l+

ṫ21(x1, x2 = 0)√
2π (x1 − l)

, (67)

follow immediately from the above calculations. These are

K̇I = ṫ∞22
√
πl, K̇II = ṫ∞21

√
πl, (68)

for mode I and mode II loading, respectively. Note that, eqns. (68) coincide
with their counterpart in elasticity without prestress, except that now the nom-
inal stress replaces the Cauchy stress.

The crack solution and the surface bifurcation condition
The previously obtained crack solution remains valid except when the sur-

face bifurcation condition, eqn. (22), is met. This condition corresponds to the
two conditions

β2ε
2
1 − β1ε

2
2 = 0, α(δ2 − χ2) + 2βδχ = 0, (69)

valid in EI and EC, respectively. When the surface bifurcation condition is
approached, the fields, solution of the crack problem, tend to blow up, a pecu-
liarity first noted by Guz (1999, and references quoted therein).

For values of parameters ξ, k, and η beyond the surface instability thresh-
old, the obtained solution still works, from a purely mathematical point of view.
However, the crack faces cannot be maintained straight after a surface bifur-
cation point has been passed, so that the solution looses its physical meaning
(the incremental energy release rate, obtained in Section 3.4, becomes negative
in this situation).
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3.2 Finite-length crack inclined with respect to the orthotropy
axes

We consider now a crack inclined with respect to the x1–x2 axes defining the
prestress directions and the orthotropy axes (see Fig. 3 of the paper, in which
the shear band should be thought to represent a crack). Therefore, the x1–x2

reference system has to be distinguished from the system x̂1–x̂2, where the x̂1

axis is aligned parallel to the crack. The transformation between the two sys-
tems is expressed by eqn. (25), while the transformations between incremental
displacement, its gradient, nominal stress and constitutive tensor are given by
eqns. (26)–(28).

The trick to solve the inclined crack problem can be deduced from Savin
(1961, see also Sih and Liebowitz, 1968) and consists in the introduction of
a function analogous to (40) [see also eqns. (48), (57), and (63)], but now
defined in the x̂1–x̂2 reference system, namely (which automatically satisfies
the decaying conditions of fields at infinity)

ψ̂◦
M (x̂1, x̂2) =

t̂∞2n

2μ

2∑
j=1

Re
[
AM

j f(ẑj)
]
, (70)

where n = 1 and M = II for mode II (n = 2 and M = I for mode I), so
that t̂∞21 (t̂∞22) is the traction component parallel (orthogonal) to the crack line.
Moreover, f(ẑj) is defined by

f(ẑj) = ẑ 2
j − ẑj

√
ẑ 2
j − l2 + l2 ln

(
ẑj +

√
ẑ 2
j − l2

)
, (71)

where
ẑj = x̂1 +Wj x̂2, Wj =

sinϑ0 + Ωj cosϑ0

cos ϑ0 − Ωj sinϑ0
. (72)

Constants AM
j in eqn. (70) can be obtained by imposing the boundary condi-

tions on the crack faces, which are

• t̂◦21(x̂1, 0±) = 0, t̂◦22(x̂1, 0±) = −t̂∞22, ∀ |x̂1| < l, for mode I;

• t̂◦21(x̂1, 0±) = −t̂∞21, t̂◦22(x̂1, 0±) = 0, ∀ |x̂1| < l, for mode II.
(73)

Imposing conditions (73) yields a linear algebraic system for the real and imag-
inary parts of constants AM

j⎡⎢⎢⎣
c11 c21 c12 c22
−c21 c11 −c22 c12
c31 c41 c32 c42
−c41 c31 −c42 c32

⎤⎥⎥⎦
⎡⎢⎢⎣

Re[AM
1 ]

Im[AM
1 ]

Re[AM
2 ]

Im[AM
2 ]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1
0
0
0

⎤⎥⎥⎦
︸ ︷︷ ︸

for mode I

or

⎡⎢⎢⎣
0
0
−1
0

⎤⎥⎥⎦
︸ ︷︷ ︸

for mode II

, (74)
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where M = I for mode I (M = II for mode II) and coefficients cij are

2μ c1j = K̂1112 − K̂1222 − Re[Wj]
[
K̂1111 − 2K̂1122 − K̂1221 + K̂2222

+Re[Wj ]
(
2K̂1121 − 2K̂2122 + Re[Wj ]K̂2121

)]
+Im[Wj]2

(
2K̂1121 − 2K̂2122 + 3Re[Wj ]K̂2121

)
,

2μ c2j = Im[Wj ]
[
K̂1111 − 2K̂1122 − K̂1221 + K̂2222

+Re[Wj ]
(
4K̂1121 − 4K̂2122 + 3Re[Wj]K̂2121

)
− Im[Wj]2K̂2121

]
,

2μ c3j = −K̂1221 + Re[Wj ]
[
K̂1121 − K̂2122 + Re[Wj ]K̂2121

)
− Im[Wj]2K̂2121,

2μ c4j = Im[Wj ]
(
−K̂1121 + K̂2122 − 2Re[Wj ]K̂2121

)
, j = 1, 2,

(75)
and depend on the crack inclination ϑ0 and on the prestress and orthotropy
parameters ξ, k and η.

The determinant of the coefficient matrix in eqn. (74) is null only when the
surface instability condition, eqn. (22), is met, so that in all other cases, system
(74) can be solved and the solution of the inclined crack follows.

The perturbed incremental displacement along the crack faces can be ob-
tained in the form

v̂◦M
1 (x̂1, x̂2 = 0±) =

t̂∞2n

2μ
Re

[
(W1A

M
1 +W2A

M
2 )

(
x̂1 ∓ i

√
l2 − x̂2

1

)]
,

v̂◦M
2 (x̂1, x̂2 = 0±) = − t̂

∞
2n

2μ
Re

[
(AM

1 +AM
2 )

(
x̂1 ∓ i

√
l2 − x̂2

1

)]
,

(76)

so that the jump in incremental displacements across the crack surfaces (x̂2 = 0,
|x̂1| < l) takes the form

[[v̂M
1 ]] =

t̂∞2n

μ
Im[W1A

M
1 +W2A

M
2 ]
√
l2 − x̂2

1,

[[v̂M
2 ]] = − t̂

∞
2n

μ
Im[AM

1 +AM
2 ]
√
l2 − x̂2

1,

(77)

where n = 1 and M = II (n = 2 and M = I) for mode II (mode I).
It is worth noting that the following conditions, proven in the particular

cases of null prestress or crack parallel to the orthotropy axes, have been in
general verified numerically to hold

Re[AI
1 +AI

2] = 0, Re[W1A
II
1 +W2A

II
2 ] = 0, (78)

showing that the incremental perturbed displacement along the x1-axis outside
the crack is only longitudinal, i.e. v̂◦2 = 0, (transversal, i.e. v̂◦1 = 0,) for mode
I (for mode II), a circumstance noted also by Broberg (1999, his section 4.14)
for infinitesimal anisotropic elasticity.
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In addition to eqns. (78), the following conditions are obtained in the particular case of
a crack parallel to the orthotropy x1-axis, ϑ0 = 0,

Im[W1A
I
1 +W2A

I
2] = 0, Im[AII

1 + AII
2 ] = 0, (79)

from which the solution obtained in Section 3.1 can be easily recovered.

Finally, the incremental stress intensity factors for an inclined crack can be
calculated and again result in the form (68), found for a crack parallel to the
orthotropy axes.

The inclined crack solution becomes particularly simple in the case when the prestress is
null, k = η = 0. In particular, for mode I we have:

AI
j = −(−1)j cos 2ϑ0

2
√

1 − ξ
− i

1 − ξ − (−1)j
√

1 − ξ sin 2ϑ0

2(1 − ξ)
√
ξ

, j = 1, 2, (80)

while for mode II:

AII
j = (−1)j

[
sin 2ϑ0

2
√

1 − ξ
+ i

cos 2ϑ0

2
√

(1 − ξ)ξ

]
, j = 1, 2, (81)

The following properties can also be proven

W1A
I
1 +W2A

I
2 = 0, AII

1 + AII
2 = 0. (82)

An interesting feature that does not hold when the prestress is present and the crack is
inclined can be deduced from eqns. (77), (82)1 and (81), namely, that a mode I (mode II)
loading does not produce longitudinal, v1, (transversal, v2,) incremental displacements along
the crack line, so that for x̂2 = 0 and |x̂1| < l, we have

[[v̂]] =

{
t̂∞21
μ
√
ξ

√
l2 − x̂2

1,
t̂∞22
μ
√
ξ

√
l2 − x̂2

1

}
, (83)

which is independent of the crack inclination ϑ0.

As an example of the previous calculations, the deformed crack line and
surfaces (incremental displacement components, reported on the vertical axis
for v̂2 and on the horizontal axis for x̂1 + v̂1, are normalized through division by
l) for mode I (left) and mode II (right) loading at infinity are illustrated in Fig.
3 for a Mooney-Rivlin material (ξ = 1) at null prestress k = 0 and at k = 0.8 for
a crack parallel to the orthotropy x1-axis, i.e. ϑ0 = 0, and inclined at ϑ0 = π/6.
Note that the mode II deformation at null prestress, k = 0 coincides with the
horizontal axis and is therefore not visible.

Interesting features emerging from Fig. 3 are: i.) the crack faces result
displaced to the shape of an ellipse; ii.) this ellipse degenerates into a segment
for mode II and null prestress; iii.) the prestress introduces an incremental
rigid-body rotation in the mode I and mode II solutions.

3.3 Shear bands interacting with a finite-length crack

In the spirit of the perturbative approach proposed by Bigoni and Capuani
(2002; 2005), the role of shear banding in the incremental deformation fields
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Figure 3: Deformed shape of a crack of length 2l, subject to mode I (left) and mode II
(right) incremental loading (t̂∞22/μ = 0.01 and t̂∞21/μ = 0.01). A Mooney-Rivlin material is
considered with null prestress k = 0 (solid curve) and a prestress defined by k = 0.8 (dashed
curve). A crack is parallel to the x1-orthotropy axis, ϑ0 = 0 (upper part), while a second
crack is inclined at an angle ϑ0 = π/6 (lower part).

around a crack of length 2l is investigated. This crack is assumed to be present
in the material with a dead loading on its surfaces to maintain the state of
prestress, before the incremental mode I and II loadings are assigned.

The crack is considered in a J 2-deformation theory material, inclined at an
angle corresponding to the shear band inclination at the EC/H boundary. In
particular, for the two values of hardening exponent N = 0.1 and N = 0.8, the
critical logarithmic strain for localization (and the shear band inclination with
respect to x1-axis) are ε ≈ 0.322 (ϑ0 ≈ 35.95◦) and ε ≈ 1.032 (ϑ0 ≈ 19.60◦),
respectively. (Note that for a J 2–deformation theory material the prestrain,
instead than the prestress, is used as the parameter controlling the current
state).

The level sets of the modulus of incremental deviatoric strain have been
mapped in Figs. 4 and 5, for low strain hardening N = 0.1 and high strain
hardening N = 0.8, respectively.

The investigation has been carried out with a choice of η, namely, η/k =
0.311 for N = 0.1 and η/k = 0.775 for N = 0.8, such that the Hill exclusion
condition (4) is satisfied.

It can be easily concluded from Figs. 4 and 5 that:

near the elliptic border the deformation fields become highly focused
and aligned parallel to the shear band conjugate directions.

An analysis of the figures reveals that it becomes difficult to predict how
the fracture will grow when loaded near the elliptic border. However, we have
to keep in mind that the analysed crack has been taken aligned parallel to one
shear band direction. It becomes instructive now to analyse the case of a hori-
zontal crack (lying therefore in a symmetry axis with respect to the conjugate
band directions), reported in Fig. 6, for a J 2–deformation theory material at
high strain hardening N = 0.8, near the EC/H boundary, and loaded under
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Figure 4: Interaction of shear bands and mechanical fields near a crack of length 2l. A
J 2–deformation theory material has been considered at low strain hardening N = 0.1, at null
prestrain ε = 0 (upper part) and prestrained near the elliptic border ε = 0.306 (lower part).
The crack is aligned parallel to a shear band direction, ϑ0 = 35.95◦. Two parallel bands
emerge for mode I incremental loading, while for mode II two conjugate band directions are
visible.

incremental mode I. Results are qualitatively analogous for different values of
strain hardening and for mode II loading, in particular, the mode II incremental
deformation fields are dominated near the elliptic border by localized deforma-
tions aligned parallel to the two shear bands conjugate directions, in a way
quite similar to Fig. 6.

We can observe that:

two symmetric shear bands emerge near the crack tip,

and their interaction may lead to failure of the material under shear in front of
the crack, a situation compatible with mode I growth, to be interpreted as a
sort of ‘alternating sliding off and cracking’, as suggested by McClintock (1971)
and Kardomateas and McClintock (1989). The situation is more complicated
for mode II loading, but our results agree with the consideration made by
Hallbäck and Nilsson (1994), that ‘mode II failure results when the direction
of the prospective shear band coincides with the crack surface direction, while
mode I type failure occurs when the shear bands are inclined to the direction
of crack surfaces.’
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Figure 5: Interaction of shear bands and mechanical fields near a crack of length 2l. A
J 2–deformation theory material has been considered at high strain hardening N = 0.8, at
null prestrain ε = 0 (upper part) and prestrained near the elliptic border ε = 0.981 (lower
part). The crack is aligned parallel to a shear band direction, ϑ0 = 19.60◦. Two parallel bands
emerge for mode I incremental loading, while for mode II two conjugate band directions are
visible.

� .981= 0

Mode I

x
2

l

x /l
1

Figure 6: Interaction of shear bands and mechanical fields near a crack of length 2l under
mode I incremental loading. A J 2–deformation theory material has been considered at high
strain hardening N = 0.8, prestrained near the elliptic border ε = 0.981. The crack is
horizontal, while the shear bands are inclined at ±19.60◦. Note that four shear bands emerge.
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3.4 Incremental energy release rate for crack growth

We slightly generalize Rice (1968) and start referring to Fig. 7 and comparing
two incremental boundary value problems (for finite bodies subject to identical
conditions on the external boundaries Sσ ∪ Sv, namely, prescribed incremental
nominal tractions σ̇0 on Sσ and incremental displacements v = v̄ on Sv) differ-
ing only in the sizes of the void that they contain. Note that we are addressing
an incremental problem, so that the surface of the void can be loaded by dead
loading.

v v=

ΔVi
V V\ VΔ i

Vi

S
�

�

�

ΔSiSi

�

�

0

Sv
v v=

S
�

�

��

�

0

Sv

Vi

ΔSi
Si

Si

ΔVi

n
Vi

ΔSi

Figure 7: Two elastic, prestressed bodies are compared (left), having identical shape, bound-
ary conditions, elastic properties, prestress, and prestrain, but voids of different size. The de-
tail of the void and its surface is reported on the right; note the unit normal vector, defined to
point outward the elastic body and toward the void. Incremental deformation of prestressed
solids are considered, so that the surface of the void can be subject to finite dead loading and
surface ΔS∗

i must be subject to the nominal tractions present on the same surface embedded
in the material in the configuration on the left.

In particular, the void in the body on the right (of volume Vi∪ΔVi, enclosed
by surface S∗

i ∪ ΔS∗
i ) has been obtained by increasing the size of the void in

the body on the left (of volume Vi, enclosed by surface Si).
Since we want to include prestress in an incremental formulation, nominal

(finite) dead tractions identical to those existing within the material containing
the void Vi must be applied on the surface ΔS∗

i of the material containing the
void Vi ∪ ΔVi.

We define the incremental displacement and nominal traction fields, solu-
tions to the two problems, as v0 and ṫ0 for the problem on the left and v = v0+ṽ
and ṫ = ṫ0 + t̃ for the problem on the right. Since the void surfaces are subject
to dead loading, ṫ0Tn = 0 and ṫTn = 0, within Vi and Vi ∪ ΔVi, respectively.

The two bodies are assumed to be identically prestressed and prestrained,
although not necessarily in a homogeneous way. If the expedient of prescribing
‘ad hoc’ dead tractions on ΔS∗

i is not considered and the void surface is free
of tractions, in order to have identical prestress and prestrain, the two current
configurations shown in Fig. 7 must have special geometries and loadings, as
will be the case of a crack aligned parallel to a principal stress direction with
the other principal stress to be null and, more important, of our shear band
model (Section 3 of the paper).

The incremental potential energy decrease for a void growth in an elastic
(incompressible or compressible, generically anisotropic and prestressed) body,
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takes an expression analogous to that reported by Rice [1968, his eqn. (55), pp.
207], namely,

−ΔṖ =
∫

ΔVi

φ(∇v0)dV − 1
2

∫
ΔS∗

i

n · t0ṽdS, (84)

a quantity which when positive, implies void growth. Note that the scalar
function φ is the incremental gradient potential defined as

ṫij =
∂φ(∇v)
∂vj,i

+ ṗ δij , φ(∇v) =
1
2
vj,iKijhkvk,h. (85)

Turning now the attention to a thin void inclusion, namely, a crack aligned
parallel to the x̂1–axis (Fig. 2), the volume integral in eqn. (84) vanishes, so
that taking the limit of the length increase Δl → 0 at fixed incremental stress
intensity factor K̇, eqn. (84) becomes

Ġ = −dṖ
dl

= lim
Δl→0

1
2Δl

∫ Δl

0
t̂2i(r, 0)[[v̂i(Δl − r, π)]] dr, (86)

where the symbol ·̂ denotes that we are using the inclined crack solution, the
repeated index is summed, r denotes the radial distance from the crack tip and
0 and π indicate values of the polar coordinate (anticlockwise) angle singling
out r from the x̂1 axis (so that θ = 0 corresponds to points ahead of the crack
tip). Eqn. (86) defines

the incremental energy release rate for a mixed mode growth of a
crack in an elastic, incompressible or compressible body, generically
anisotropic and prestressed.

The proof that the incremental energy release rate coincides with the path–independent
incremental J̇–integral

J̇ =

∫
Γ

(
φ̂ n̂1 − n̂j t̂ji

∂ v̂i

∂ x̂1

)
dΓ, (87)

has not yet been explicitly obtained, but the validity of Ġ = J̇ has been verified numerically.

The incremental energy release rate (86) can be developed making use of
the asymptotic near-tip incremental nominal stress ahead of the crack

t̂22(r, 0) =
K̇I√
2πr

, t̂21(r, 0) =
K̇II√
2πr

, (88)

and incremental displacement on the crack faces (where constants have been
neglected)

v̂1(Δl − r,±π) = ±
√

2l
√

Δl − r

2μ
Im

[
t̂∞22(W1A

I
1 +W2A

I
2) + t̂∞21(W1A

II
1 +W2A

II
2 )
]
,

v̂2(Δl − r,±π) = ∓
√

2l
√

Δl − r

2μ
Im

[
t̂∞22(A

I
1 +AI

2) + t̂∞21(A
II
1 +AII

2 )
]
,

(89)
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holding for ‘small’ Δl.
Employing the asymptotic near-tip representations (88) and (89) in eqn.

(86) we obtain

Ġ = −K̇2
I

Im
[
AI

1 +AI
2

]
4μ

+ K̇2
II

Im
[
W1A

II
1 +W2A

II
2

]
4μ

+K̇IK̇II
Im

[
W1A

I
1 +W2A

I
2 −AII

1 −AII
2

]
4μ

,

(90)

representing the incremental energy release rate for an inclined crack
loaded in mixed mode in a prestressed, orthotropic and incompress-
ible material.

From eqn. (90) the incremental energy release rate for a mixed mode loading of a crack
parallel to the orthotropy axes (i.e. ϑ0 = 0) can be made explicit

Ġ =
Λ

μ

K̇ 2
I

√
1 − k + K̇ 2

II

√
1 + k

(2ξ − η + Λ)2
√

2ξ − 1 − Λ − (2ξ − η − Λ)2
√

2ξ − 1 + Λ
, (91)

where there is no coupling between the two modes I and II.
Another interesting special case is that of null prestress, in which for an inclined crack

the following expression of the incremental energy release rate can be obtained

Ġ =
K̇2

I + K̇2
II

4μ
√
ξ

, (92)

which agrees with the known isotropic elasticity solution in the incompressible limit, recovered
for ξ = 1.

Note that both incremental energy release rates (90) and (91) generally (an
exception to this rule will be shown in Fig. 8) blow up to infinity when the
surface bifurcation, eqn. (22) or (69), is approached, as in the case of the crack
aligned parallel to one of the orthotropy axes. This feature is evident in the
example reported below.

An example of calculation of incremental energy release rate for inclined (at
ϑ0 = {0, π/4, π/2}) mode I and a mode II cracks in an incrementally isotropic
material (ξ = 1) as a function of the prestress parameter k is reported in Fig.
8, where Ġ has been normalized through division by K̇2

M and multiplication
by 4μ. In order to explore the incremental energy release rate until close to
the elliptic boundary (more precisely, to the EI/P boundary), we have taken
η = k > 0, so that the Hill condition (4) excludes all possible bifurcations within
EI. It may be interesting to observe from Fig. 8 that, with the exceptions of
ϑ0 = 0 for mode I and ϑ0 = π/2 for mode II, the incremental energy release rate
blows up to infinity when k approaches 1. These exceptions can be motivated
by the circumstance that at the EI/P boundary only one shear band forms
aligned parallel to the major principal (tensile in this case) stress component,
σ1. Therefore, for mode I (mode II) a crack parallel (orthogonal) to the shear

22



Figure 8: Incremental stress release rate for a mode I and mode II cracks of length 2l inclined
at ϑ0 = {0, π/4, π/2} with respect to the principal stress axis x̂1 in an incrementally isotropic
material (ξ = 1) as a function of the prestress parameter k, taken positive and equal to η, so
that the Hill exclusion criterion (4) is satisfied.

band is not influenced by the progressive weakening in the shear band direction
occurring when the elliptic boundary is approached.

Note that for a Mooney-Rivlin material μ is a function of k, blowing up to
infinity, when the EI/P boundary (k = 1) is approached. As a consequence, for
a Mooney-Rivlin material the energy release rate remains finite when k tends
to 1.

Note that for null prestress, η = k = 0, eqn. (92) shows that the incremental energy release
rate blows up to infinity when ξ tends to zero, which corresponds to the EC/H boundary and
to the appearance of the two shear bands inclined at π/4 with respect to the principal stress
direction, typical of Mises plasticity.

Fig. 8 reveals another interesting feature, namely, that the curves corre-
sponding to ϑ0 = {0, π/4, π/2} in mode I are identical to the curves corre-
sponding, respectively, to ϑ0 = {π/2, π/4, 0} in mode II. More in general, the
following relation can be proven in the absence of prestress using eqns. (80)
and (81)

ĠI(ϑ0)
K̇2

I

=
ĠII(π/2 − ϑ0)

K̇2
II

, (93)

and has been numerically found to hold also when the prestress is different from
zero.
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