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Abstract

It is shown that second-order homogenization of a Cauchy-elastic dilute suspension of
randomly distributed inclusions yields an equivalent second gradient (Mindlin) elastic mate-
rial. This result is valid for both plane and three-dimensional problems and extends earlier
findings by Bigoni and Drugan (Analytical derivation of Cosserat moduli via homogenization
of heterogeneous elastic materials. J. Appl. Mech., 2007, 74, 741–753) from several points of
view: (i.) the result holds for anisotropic phases with spherical or circular ellipsoid of iner-
tia; (ii.) the displacement boundary conditions considered in the homogenization procedure
is independent of the characteristics of the material; (iii.) a perfect energy match is found

between heterogeneous and equivalent materials (instead of an optimal bound). The con-
stitutive higher-order tensor defining the equivalent Mindlin solid is given in a surprisingly
simple formula. Applications, treatment of material symmetries and positive definiteness of
the effective higher-order constitutive tensor are deferred to Part II of the present article.

Keywords: Second-order homogenization; Higher-order elasticity; Effective non-local contin-
uum; Characteristic length-scale; Composite materials.

1 Introduction

Due to the lack of a characteristic length, local constitutive models are unsuitable for mechani-
cal applications at the micro- and nano-scale, since size-effects evidenced by experiments cannot
be described and the modelling fails when large strain gradient are present, as in the case of
shear band formation (Dal Corso and Willis, 2011). Therefore, many nonlocal models have been
formulated and developed, starting from the pioneering work by the Cosserat brothers (1909)
and by Koiter (1964) and Mindlin (1964). Despite their evident connection to the microstruc-
ture, nonlocal models are usually introduced in a phenomenological way, so that attempts of
explicitly relating the microstructure to nonlocal effects are scarce (theoretical considerations
were developed by Achenbach and Hermann, 1968; Beran and McCoy, 1970; Boutin, 1996;
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Dal Corso and Deseri, 2013; Forest and Trinh, 2011; Li, 2011; Pideri and Seppecher, 1997;
Wang and Stronge, 1999; numerical approaches were given by Auffray et al. 2010; Forest, 1998;
Ostoja-Starzewski et al. 1999; Bouyge et al. 2001; experiments were provided by Anderson
and Lakes, 1994; Buechner and Lakes, 2003; Lakes, 1986; Gauthier, 1982).

Bigoni and Drugan (2007) have provided a technique to identify Cosserat constants from
homogenization of a heterogeneous Cauchy elastic solid. Their approach shows how a nonlo-
cal material can be realized starting from a ‘usual’ Cauchy elastic composite and opens the
way to the practical realization of nonlocal materials. Their methodology has two important
limitations, namely, that (i.) the obtained characteristic lengths for the Cosserat material do
not allow a complete match of the elastic energies between the Cauchy heterogeneous and the
Cosserat homogeneous materials, but minimize the energy difference between these two, and
(ii.) that the homogenization is performed by imposing boundary displacements on the RVE
and on the equivalent material depending on the Poisson’s ratio of the material (so that the
boundary conditions considered are not exactly equal). These two limitations are overcome in
the present article, by using a higher-order ‘Mindlin’ nonlocal elastic material which provides
a perfect match between the elastic energies of a dilute suspension of Cauchy-elastic inclusions
(randomly distributed in a Cauchy-elastic matrix) and a homogeneous non-local elastic mate-
rial, obtained through application of the same displacement field at the boundary. Moreover,
although our results remain confined to the dilute assumption, we also generalize Bigoni and
Drugan (2007) by relaxing (iii.) the restriction of isotropy and (iv.) the shape of the inclusions,
which may now have a generic form (though subject to certain geometrical restrictions to be
detailed later).

Description of the proposed identification procedure of the Mindlin elastic constants and
the relative closed-form formulae are reported in this article, while a discussion about positive-
definiteness, material symmetries and applications to explicit cases are deferred to Part II.

2 Preliminaries on Second-Gradient Elasticity (SGE)

The equations are briefly introduced governing the equilibrium of the second-gradient elastic
(SGE) solid proposed by Mindlin and Eshel (1968)1 that will be employed in the homogenization
procedure.

Considering a quasi-static deformation process, defined by the displacement field u (function
of the position x ), the primary kinematical quantities of the SGE are defined as

εij =
ui,j + uj,i

2
, χijk = uk,ij , (1)

where a comma denotes differentiation, the indices range between 1 and N (equal to 2 or 3,
depending on the space dimensions of the problem considered), and ε and χ are the (second-
order) strain and the (third-order) curvature tensor fields, respectively, satisfying the following
symmetry properties

εij = εji, χijk = χjik. (2)

Defining the statical entities Cauchy stress σij=σji and double stress τijk=τjik, respectively
work-conjugate to the kinematical entities ε and χ, eqn (1), the principle of virtual work can
be written for a solid occupying a domain Ω, with boundary ∂Ω and set of edges Γ, in the

1Note that the linear elastic second-gradient (of the displacement) model is fully equivalent to the linear
elastic first-gradient (of the strain) model (Mindlin and Eshel; 1968).
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absence of body-force as
∫

Ω
(σijδεij + τijkδχijk) =

∫

∂Ω
(tiδui + TiDδui) +

∫

Γ
Θiδui, (3)

where repeated indices are summed, t represents the surface traction (work-conjugate to u),
while T and Θ denote the generalized tractions on the surface ∂Ω and along the set of edges Γ
(work-conjugate respectively to Du and u), and D = nl∂l represents the derivative along the
outward normal direction to the boundary n (only on ∂Ω but not on Γ). Through integration
by parts, the equilibrium conditions, holding for points within the body Ω, can be obtained as

∂j (σjk − ∂iτijk) = 0, in Ω, (4)

while for points on the boundary ∂Ωp and along the set of edges Γp, (where statical conditions
are prescribed in terms of t , T and Θ) as







njσjk − ninjDτijk − 2njDiτijk + (ninjDlnl −Djni) τijk = tk,

ninjτijk = Tk,
on ∂Ωp, (5)

and
[[ emljnismnlτijk ]] = Θk, onΓp, (6)

where emlj is the Ricci ‘permutation’ tensor, Dj = (δjl − njnl) ∂l, s is the unit vector tangent
to Γ and [[·]] represents the jump of the enclosed quantity, computed with the normals n defined
on the surfaces intersecting at the edge Γ. Finally, kinematical conditions2 are prescribed for
points on the remaining boundary ∂Ωu ≡ ∂Ω\∂Ωp as







ui = ui,

Dui = Dui,
on ∂Ωu. (7)

Introducing the strain energy density wSGE = wSGE(ε,χ), the σ and τ fields can be
obtained as

σij =
∂wSGE

∂εij
, τijk =

∂wSGE

∂χijk

, (8)

so that, restricting attention to centrosymmetric materials within a linear theory3, it follows
that

wSGE(ε,χ) =
1

2
Cijhkεijεhk
︸ ︷︷ ︸

wSGE,L(ε)

+
1

2
Aijklmnχijkχlmn

︸ ︷︷ ︸

wSGE,NL(χ)

, (9)

where C and A are the local (fourth-order) and non-local (sixth-order) constitutive tensors, each
generating respectively a strain energy density contribution, say ‘local’, wSGE,L (corresponding
to the energy stored in a Cauchy material, wSGE,L = wC) and ‘non-local’, wSGE,NL. Therefore,
the linear constitutive equations for the stress and double stress quantities are obtained as

σij = Cijhkεhk, τijk = Aijklmnχlmn, (10)

2In the proposed homogenization procedure only kinematical boundary conditions will be imposed (∂Ωp ≡ ∅,
so that ∂Ωu ≡ ∂Ω).

3Centrosymmetry is coherent with the fact that the elastic energies at first- and at second- order are decoupled
under the geometrical assumptions that will be introduced in Section 3.1.
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which, from eqns (1) and (8), have the following symmetries

Cijhk = Cjihk = Cijkh = Chkij , Aijklmn = Ajiklmn = Aijkmln = Almnijk. (11)

In the case of isotropic response, the constitutive elastic tensors C and A can be written in the
following form

Cijhk = λδijδhk + µ(δihδjk + δikδjh),

Aijhlmn =
a1
2

[δij (δhlδmn + δhmδln) + δlm (δinδjh + δihδjn)]

+
a2
2

[δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+2 a3 (δijδhnδlm) + a4 (δilδjm + δimδjl) δhn

+
a5
2

[δin (δjlδhm + δjmδhl) + δjn (δilδhm + δimδhl)] ,

(12)

where δij is the Kronecker delta, λ and µ are the usual Lamé constants, defining the local
isotropic behavior, while ai (i = 1, ..., 5) are the five material constants (with the dimension of
a force) defining the nonlocal isotropic behavior. Considering the constitutive isotropic tensors
(12), the strain energy density (9) becomes

wSGE(ε,χ) =
λ

2
εiiεjj + µεijεij

︸ ︷︷ ︸

wSGE,L(ε)

+
5∑

k=1

akIk(χ)

︸ ︷︷ ︸

wSGE,NL(χ)

, (13)

where the invariants Ik(χ) are

I1(χ) = χiik χjkj(= χiik χkjj),

I2(χ) = χiki χjkj(= χkii χjkj = χkii χkjj = χiki χkjj),

I3(χ) = χiik χjjk,

I4(χ) = χijk χijk(= χjik χijk = χjik χjik = χijk χjik),

I5(χ) = χijk χkji(= χjik χkji = χjik χjki = χijk χjki),

(14)

so that the linear constitutive relations (10) reduce to

σij = λεllδij + 2µεij ,

τijk =
a1
2

(χlliδjk + 2χkllδij + χlljδik) + a2 (χillδjk + χjllδik) + 2a3χllkδij

+2a4χijk + a5 (χkji + χkij) .

(15)

Since the invariants defined by eqns (14) satisfy the following inequalities

2I1(χ) + I2(χ) + I3(χ) ≥ 0, I2(χ) ≥ 0, I3(χ) ≥ 0,

I4(χ) ≥ 0, I4(χ) + I5(χ) ≥ 0,
(16)

the positive definiteness condition for the isotropic strain energy density wSGE(ε,χ), eqn (13),
corresponds to the usual restraints for the local parameters (given by the positive definiteness
of wSGE,L(ε))

3λ+ 2µ > 0, µ > 0, (17)
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which are complemented by the following conditions (Mindlin and Eshel, 1968) on the nonlocal
constitutive parameters (given by the positive definiteness of wSGE,NL(χ))

−a4 < a5 < 2a4, e1 > 0, e2 > 0, 5e23 < 2e1e2, (18)

where

e1 = −4a1 + 2a2 + 8a3 + 6a4 − 3a5, e2 = 5(a1 + a2 + a3) + 3(a4 + a5),

e3 = a1 − 2a2 + 4a3.
(19)

3 Homogenization procedure

The proposed homogenization procedure follows Bigoni and Drugan (2007). In particular, the
same4 (linear and quadratic) displacement is applied on the boundary of both the representa-
tive volume element RVE and the homogeneous equivalent SGE material. Then, the equivalent
local Ceq and non-local Aeq tensors are obtained imposing the vanishing of the elastic energy
mismatch between the two materials. Since the strain energy in the homogeneous SGE mate-
rial is given only by the local contribution when linear displacement boundary condition are
applied (because no strain gradient arises), the equivalent local tensor Ceq corresponds to that
obtained with usual homogenization procedures. Thus, the remaining unknown of the equiva-
lent SGE material (namely, the non-local equivalent constitutive tensor A

eq) can be obtained
by imposing the vanishing mismatch in strain energy when (linear and) quadratic displacement
are considered. A chief result in the current procedure is that a perfect match in the elastic
energies is achieved, while Bigoni and Drugan (2007) only obtained an ‘optimality condition’
for the mismatch.

The homogenization procedure is described in the following three steps, where reference is
made to a generic RVE, although results will be presented for a diluted distribution of randomly
located inclusions.

Step 1. Consider a RVE made up of a heterogeneous Cauchy material (C), Fig. 1 (left),
occupying a region

ΩC
RV E ≡ ΩC

1 ∪ ΩC
2 ,

where an inclusion, phase ‘2’ (occupying the region ΩC
2 and with elastic tensor C

(2)), is
fully enclosed in a matrix, phase ‘1’ (occupying the region ΩC

1 and with elastic tensor
C
(1)), so that the constitutive local tensor C(x ) within the RVE can be defined as the

piecewise constant function

C(x ) =







C
(1)

x ∈ ΩC
1 ,

C
(2)

x ∈ ΩC
2 ,

(20)

and the volume fraction f of the inclusion phase can be defined as

f =
ΩC
2

ΩC
RV E

. (21)

4Bigoni and Drugan (2007) impose a linear and quadratic displacement field on the boundaries of the RVE
and of the homogeneous equivalent material, whose quadratic part depends on the Poisson’s ratio of the material
to which the displacement is applied, so that the applied displacements are not exactly equal. Furthermore, the
equivalent material considered by Bigoni and Drugan is a non-local Koiter material (1964), which does not permit
the annihilation, but only a minimization of the elastic energy mismatch between the RVE and the equivalent
material.
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The equivalent material is a homogeneous SGE material, Fig. 1 (right), occupying the
region ΩSGE

eq

ΩSGE
eq = ΩC

RV E , (22)

and constitutive elastic tensors Ceq (local part) and A
eq (nonlocal part). Since the region

ΩSGE
eq of the equivalent SGE material corresponds by definition to the region ΩC

RV E of the
heterogeneous RVE, in the following both these domains may be identified as Ω.

WRVE

C
Weq

SGE

Figure 1: Left: Heterogeneous Cauchy-elastic RVE where a matrix of elastic tensor C
(1) contains a generic

inclusion of elastic tensor C(2). Right: Homogeneous equivalent SGE material with local tensor Ceq and nonlocal
tensor Aeq.

Step 2. Impose on the RVE boundary the following second-order (linear and quadratic) dis-
placement field u , Fig. 2 (left)

u = u , on ∂ΩC
RV E , (23)

with
ui = αijxj

︸ ︷︷ ︸

uαi

+βijkxjxk
︸ ︷︷ ︸

uβi

, (24)

where αij and βijk are constant coefficients, the latter having the symmetry βijk=βikj .

Impose on the equivalent homogeneous SGE boundary again the displacement (24), but
together with its normal derivative, Fig. 2 (right), so that







u = u ,

Du = Du ,
on ∂ΩSGE

eq . (25)

Note that the mean value of the local strain gradient, which cannot be controlled solely by
Dirichlet conditions, is defined by imposing the Neumann condition (25)2. This condition
can be justified through consideration of the dilute assumption, so that the influence of
the inclusion on the normal derivative is negligible near the boundary of the RVE.

The imposition of the boundary conditions (23) on the RVE and (25) on the equivalent
SGE corresponds, respectively, to the two strain energies

WC
RV E =

∫

ΩC
1

wC
∣
∣
C

(1) +

∫

ΩC
2

wC
∣
∣
C

(2) , WSGE
eq =

∫

ΩSGE
eq

wSGE
∣
∣
C

eq
,A

eq , (26)

so that for a generic quadratic displacement field, eqn. (24), an energy mismatch (or ‘gap’)
G between the two materials arises as a function of the unknown equivalent constitutive
tensor Aeq

G
(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E −WSGE

eq . (27)
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WRVE

C
Weq

SGE

WRVE

C
Weq

SGE

Figure 2: Imposition of the same linear (top) and quadratic (bottom) boundary displacement conditions on the
heterogeneous Cauchy RVE (left) and on the homogeneous equivalent SGE (right). In the homogeneous equiva-
lent SGE (right) the normal derivative of displacement (Neumann condition) is also imposed at the boundary.

Step 3. Find the unknown equivalent constitutive tensor A
eq by imposing a null energy mis-

match G

G
(

C
(1),C(2),Ceq,Aeq

)

= 0. (28)

Note that in the case of purely linear displacements (β = 0) the energy mismatch G is null
by definition of Ceq. On the other hand, when quadratic displacements are considered,
an energy mismatch G is different from zero and can be tuned to vanish by changing the
value of the unknown tensor Aeq.

The above-procedure is general, but subsequent calculations will be limited to the dilute
approximation, and the results will be an extension of Bigoni and Drugan (2007) since (i.)
the inclusions are of arbitrary shape and, more interestingly, (ii.) the comparison material, a
Mindlin elastic second-gradient material, allows a perfect match of the energies (while Bigoni
and Drugan (2007) did consider only cylindrical or spherical inclusions and were only able to
provide a minimization of the energy gap).

3.1 Assumptions about geometrical properties of matrix and inclusion phases

Henceforth the following geometrical properties for both the subsets ΩC
1 and ΩC

2 will be as-
sumed:5

5Note that, by definition of static moment vector S and Euler tensor of inertia E , eqn (33), the geometrical
properties GP1, eqn (31) and GP2, eqn (32), of the subsets ΩC

1 and ΩC
2 are also necessarily satisfied by ΩC

RV E ,
so that

S(ΩC
RV E) = 0, E(ΩC

RV E) = ρ
2ΩC

RV EI , (29)

where the radius ρ = ρ(ΩC
RV E) is related to the radii of the matrix ρ(1) and the inclusion ρ(2) as follows

ρ
2 = (1− f)

[

ρ
(1)

]2

+ f
[

ρ
(2)

]2

. (30)
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GP1) The centroids of the matrix and of the inclusion coincide and correspond to the origin
of the xi–axes, so that both the static moments of the inclusion and of the matrix are null

S(ΩC
1 ) = 0, S(ΩC

2 ) = 0. (31)

GP2) The xi–axes are principal axes of inertia for both the matrix and the inclusion and the
ellipsoids of inertia are a sphere (or a circle in 2D)

E(ΩC
1 ) =

[

ρ(1)
]2

ΩC
1 I , E(ΩC

2 ) =
[

ρ(2)
]2

ΩC
2 I , (32)

where I is the identity second-order tensor and the second-order Euler tensor of inertia
E relative to the xi–axes, defined for a generic solid occupying the region V as

Eij(V ) =

∫

V

xi xj , (33)

while ρ(1) = ρ(ΩC
1 ) and ρ(2) = ρ(ΩC

2 ) are the radii of the spheres (or circles in 2D) of
inertia of the matrix and the inclusion. Note that the assumption of spherical tensors of
inertia yields a spherical tensor for the RVE, which is coherent with the assumption of
randomness of the distribution of inclusions.

GP3) The radius of the sphere of inertia for the inclusion phase vanishes in the limit of null
inclusion volume fraction

lim
f→0

ρ(2)(f) = 0, (34)

or, equivalently, all the dimensions of the inclusion (and therefore the radius of the smallest
ball containing the inclusion) are zero for f = 0.

Examples of two-dimensional RVE, characterized by the geometrical properties GP1-GP2
and GP3 are reported in Figs. 3 and 4, respectively.

Figure 3: Some examples of two-dimensional RVE satisfying the geometrical properties GP1, eqn (31), and
GP2, eqn (32), for plane strain condition.

4 Equivalent nonlocal properties from homogenization in the
dilute case

The following proposition is the central result in this article, providing the nonlocal effective

tensor from second-order homogenization of a heterogeneous Cauchy RVE containing a small

inclusion.
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decreasing inclusion volume fraction  f

decreasing inclusion volume fraction  f

P Satisfying

GP3

Not satisfying

GP3

Figure 4: Examples of two-dimensional RVE satisfying (upper part) or not (lower part) the geometrical property
GP3, eqn (34). In the lower part, the radius of inertia of the inclusion does not vanish in the limit of vanishing
volume fraction.

Homogenization proposition. For a dilute concentration of the inclusion phase (f ≪ 1)
and assuming the geometrical properties GP1 - GP2 - GP3 for the RVE, the nonlocal sixth-
order tensor Aeq of the equivalent SGE material is evaluated (at first-order in f) as

A
eq
ijhlmn = −f

ρ2

4

(

C̃ihlnδjm + C̃ihmnδjl + C̃jhlnδim + C̃jhmnδil

)

+ o(f), (35)

where ρ is the radius of the sphere (or circle in 2D) of inertia of the RVE cell, and C̃ is
introduced to define (at first-order in f) the difference between the local constitutive tensors
for the effective material Ceq and the matrix C

(1), so that

C
eq = C

(1) + f C̃, (36)

which is assumed to be known from standard homogenization, performed on linear displacement
boundary conditions.

Eqn (35) represents the solution of the homogenization problem and is obtained by imposing
the vanishing of the energy mismatch G, eqn (28), when the same second-order displacement
boundary conditions are applied both on the heterogeneous Cauchy material and on the homo-
geneous equivalent SGE material, eqns (23) and (25), respectively.

From the solution (35), in agreement with Bigoni and Drugan (2007), it can be noted that:

• the equivalent SGE material is positive definite if and only if C̃ is negative definite;

• the constitutive higher-order tensor Aeq is linear in f for dilute concentration.

Proof of the homogenization proposition

i) Consider the second-order (linear and quadratic) displacement boundary condition (25)
applied on the boundary of a homogeneous SGE material with constitutive tensors C and

9
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A. In the absence of body force, b = 0, let us consider the extension within the body of
the quadratic displacement field u , eqn (24), applied on the boundary

ui = αijxj
︸ ︷︷ ︸

uαi

+βijkxjxk
︸ ︷︷ ︸

uβi

, x inΩ, (37)

providing the following deformation ε and curvature χ fields

εij =
αij + αji

2
+ (βijk + βjik)xk, χijk = 2βkij , (38)

and the following stress σ and double-stress τ fields,

σij = Cijhkαhk + 2Cijhkβhklxl, τijk = 2Aijklmnβnlm. (39)

The stress field (39) follows from the displacement field (37) and satisfies the equilibrium
equation (4) if and only if 6

Cijhkβhkj = 0, (40)

which for isotropic homogeneous materials reduces to the condition obtained by Bigoni and
Drugan (2007)

βjji = −(1− 2ν)βikk, (41)

(with Poisson’s ratio ν = λ/2(λ+ µ)).

In the following we will use the superscript ⋄ for β (namely, β⋄) to denote the components
of the third-order tensor β satisfying eqn (40), or (41) for isotropy.

ii) Consider an auxiliary material with local constitutive tensor C
∗, defined as a first-order

perturbation in f to the equivalent local constitutive tensor Ceq, namely,

C
∗ = C

eq + f
(

Ĉ− C̃

)

, (42)

so that using eqn (36) we can write

C
∗ = C

(1) + f Ĉ, (43)

where Ĉ, together with C
∗, define an arbitrary material with properties ‘close’ to both the

matrix and the equivalent material, an arbitrariness which will be used later to eliminate
the constraint (40). By definition, the displacement field

u∗i = αijxj
︸ ︷︷ ︸

uαi

+β⋄∗

ijkxjxk
︸ ︷︷ ︸

uβ
⋄∗

i

, x inΩ. (44)

is equilibrated [in other words satisfies eqn (40)] in a homogeneous material characterized
by the constitutive tensor C∗ and corresponds to the following quadratic displacement field
on the boundary

u∗i = αijxj
︸ ︷︷ ︸

uαi

+β⋄∗

ijkxjxk
︸ ︷︷ ︸

uβ
⋄∗

i

, x on ∂Ω. (45)

6Note that the constraint (40) arises independently of whether the material is Cauchy elastic or SGE.
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iii) Apply on the boundary ∂ΩC
RV E of the heterogeneous Cauchy material (RVE) the displace-

ment boundary condition (45),

u
RV E = u

∗, on ∂ΩC
RV E . (46)

According to Lemma 1 (Appendix A.1), the strain energy in the RVE at first-order in
f is the sum of the strain energy due to the linear (α) and nonlinear (β) displacement
boundary conditions, and the mutual strain energy, say, the ‘α−β energy term’ is null at
first-order in f ,7 so that

WC
RV E (u∗) = WC

RV E (uα) +WC
RV E

(

u
β⋄∗

)

+ o(f). (48)

iv) Apply on the boundary ∂ΩSGE
eq of the homogeneous SGE material the same displacement

boundary condition u
∗, eqn (45), imposed to the RVE and complemented by the higher-

order boundary condition in terms of displacement normal derivative taken equal8 to Du
∗







u
SGE = u

∗,

Du
SGE

= Du
∗,

on ∂ΩSGE
eq , (49)

where Du
∗ is the normal derivative of the displacement field (44).

According to the result presented in Lemma 2 (Appendix A.2), the α−β energy term is
null and the strain energy in ΩSGE

eq is

WSGE
eq (u∗, Du

∗) = WSGE
eq (uα, Du

α) +WSGE
eq

(

u
β⋄∗

, Du
β⋄∗

)

, (50)

where Du
α and Du

β⋄∗

are the contributions of the imposed normal derivative depending
on α and β terms in Du

∗, respectively.

v) The energy minimization procedure, eqn (28), can be performed using the energy stored
in the heterogeneous Cauchy material WC

RV E , eqn (48), and in the homogeneous SGE
material WSGE

eq , eqn (50), so that the energy mismatch is given by

G
(

C
(1),C(2),Ceq,Aeq

)

= Gα
(

C
(1),C(2),Ceq,Aeq

)

+ Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

(51)

where

Gα
(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E (uα)−WSGE

eq (uα, Du
α) ,

Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E

(
u
β⋄∗
)
−WSGE

eq

(
u
β⋄∗

, Du
β⋄∗
)
.

(52)

7Considering that the RVE satisfies geometrical symmetry conditions, in addition to the geometrical properties
GP1 and GP2, it can be proven that the mutual energy is identically null even in the case of non-dilute
suspension of inclusion

W
C
RV E (u∗) = W

C
RV E (uα) +W

C
RV E

(

u
β⋄∗

)

, ∀ f. (47)

8The displacement field eqn (44) is the solution for a homogeneous SGE when boundary conditions (49) are
imposed. It can be easily proven that the result of the proposed homogenization procedure holds when the

higher-order boundary condition changes as Du
SGE

= Du
RV E since the strain energy developed in the SGE

material is the same at the first order

W
SGE
eq

(

u
∗

, Du
RV E

)

= W
SGE
eq (u∗

, Du
∗) + o(f).

11
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Since only the local contribution (depending on C
eq) arises in the SGE strain energy when

the linear boundary displacement condition (β⋄∗ = 0 and u
SGE = u

α, Du
SGE

= Du
α)

is imposed (while the non-local contribution depending on A
eq is identically null because

higher-order stress and curvature are null), the energy mismatch Gα due to the α terms is
null by definition of Ceq (which is known from the first-order homogenization procedure)

Gα
(

C
(1),C(2),Ceq,Aeq

)

= Gα
(

C
(1),C(2),Ceq

)

= 0. (53)

Therefore, the proposed energy minimization procedure, based on linear and quadratic
displacement boundary condition and leading to the definition of Aeq, can be performed
referring only to the β⋄∗ terms,

G
(

C
(1),C(2),Ceq,Aeq

)

= Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

. (54)

vi) Keeping into account the results presented in Lemma 3 (Appendix A.3) and Lemma 4
(Appendix A.4), the energy mismatch (54) is given by the difference of the following two
terms

WC
RV E(u

β⋄∗

) = 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f). (55)

and
WSGE

eq (uβ⋄∗

, Du
β⋄∗

) = 2Ω
(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

β⋄∗

ijlβ
⋄∗

hkm + o(f). (56)

vii) Therefore, from eqns (36), (55) and (56), the annihilation of the strain energy gap G,
eqn (54) (between the real heterogeneous Cauchy and the equivalent homogeneous SGE
materials) is represented by the condition

(

fρ2C̃ijhkδlm + A
eq
jlikmh

)

β⋄∗

ijlβ
⋄∗

hkm + o(f) = 0. (57)

viii) The energy annihilation (57) has been obtained for a nonlinear displacement field β⋄∗, in
equilibrium within a homogeneous material with local constitutive tensor C∗. But, accord-
ing to eqn (43), tensor C∗ defines an arbitrary material, so that using this arbitrariness we
obtain (

fρ2C̃ijhkδlm + A
eq
jlikmh

)

βijlβhkm + o(f) = 0, (58)

where the components of β are unrestricted, except for the symmetry βijk=βikj . Even-
tually, the annihilation of energy mismatch G, eqn (58), defines the non-local constitutive
tensor Aeq for the equivalent SGE material as in eqn (35). �

5 Conclusions

Micro- or nano-structures embedded in solids introduce internal length-scales and nonlocal
effects within the mechanical modelling, leading to higher-order theories. We have provided
an analytical approach to the determination of the parameters defining an elastic higher-order
(Mindlin) material, as the homogenization of a heterogeneous Cauchy elastic material, eqn
(35). This result, obtained through the proposed homogenization procedure, is limited to
the dilute approximation, but is not restricted to isotropy of the constituents and leaves a
certain freedom to the shape of the inclusions. A perfect match between the elastic energies of

12
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the heterogeneous and homogeneous materials is obtained. Examples and results on material
symmetry and positive definiteness are deferred to part II of this article (Bacca et al., 2013).
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A Proofs of lemmas 1-4

A.1 Lemma 1: Null mutual α–β energy term for the RVE at the first-order
in concentration f

Statement. When a quadratic displacement u
∗, eqn (45), is applied on the boundary of a

RVE satisfying the geometrical properties GP1 and GP3, the strain energy at first-order in f
is given by eqn (48).

Proof. By the superposition principle, the fields originated by the application of u∗ = u
α +

u
β⋄∗

are given by the sum of the respective fields originated from the boundary conditions uα

and u
β⋄∗

ε(x ) = εα(x ) + εβ
⋄∗

(x ), σ(x ) = σα(x ) + σβ⋄∗

(x ), (A.1)

(the latter calculated through the constitutive eqn (10)1) so that the strain energy (26)1 becomes

WC
RV E(u

∗) = WC
RV E(u

α) +WC
RV E(u

β⋄∗

) +WC
RV E(u

α;uβ⋄∗

)
︸ ︷︷ ︸

mutual energy

(A.2)

where

WC
RV E(u

α) =
1

2

∫

ΩR

εαij(x )Cijhk(x )ε
α
hk(x ),

WC
RV E(u

β⋄∗

) =
1

2

∫

ΩR

εβ
⋄∗

ij (x )Cijhk(x )ε
β⋄∗

hk (x ),

WC
RV E(u

α;uβ⋄∗

) =

∫

ΩR

εαij(x )Cijhk(x )ε
β⋄∗

hk (x ).

(A.3)

Through two applications of the principle of virtual work9 the mutual energy (A.3)3 can be
computed as

WC
RV E(u

α;uβ⋄∗

) = αij

∫

ΩR

σβ⋄∗

ij (x ), (A.5)

9In the first application, the fields corresponding to the solution (A.1) are considered

∫

ΩR

ε
α
ij(x )σ

β⋄∗

ij (x ) =

∫

∂ΩR

u
α
i (x )t

β⋄∗

i (x ), (A.4)

while in the second application, the kinematical field generated by the admissible displacement u
α (44) within

the RVE is considered so that the mutual energy (A.5) is obtained.

13
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which, using the constitutive relation (10)1 and the symmetries of the local constitutive tensors
C
(1) and C

(2), can be decomposed as the sum of two contributions

WC
RV E(u

α;uβ⋄∗

) = αijC
(1)
ijhk

∫

ΩR

uβ
⋄∗

h,k (x ) + αij

(

C
(2)
ijhk − C

(1)
ijhk

) ∫

ΩR2

uβ
⋄∗

h,k (x ). (A.6)

Through two further applications of the divergence theorem and using the geometrical
property GP1 for the RVE,10 the first term on the right-hand-side of eqn (A.6) results to
be null

αijC
(1)
ijhk

∫

ΩR

uβ
⋄∗

h,k (x ) = 0. (A.9)

Introducing the mean value over a domain Ω of the function f(x ) as

〈f(x )〉|Ω =
1

Ω

∫

Ω
f(x ), (A.10)

the second term on the right-hand-side of eqn (A.6) can be rewritten as

αij

(

C
(2)
ijhk − C

(1)
ijhk

)

ΩR2

〈

uβ
⋄∗

h,k (x )
〉∣
∣
∣
ΩR2

. (A.11)

Assuming the geometrical property GP3 for the RVE, the displacement field in the presence
of the inclusion is given by the asymptotic expansion in the volume fraction f

uβ
⋄∗

i = β⋄∗

ijkxjxk + f q ũβ
⋄∗

i + o(f), (A.12)

subject to the constraint
0 < q ≤ 1, (A.13)

and considering the geometrical property GP1 for the RVE, together with the definition of
volume fraction f , eqn (21), expression (A.11) becomes

f q+1Ωαij

(

C
(2)
ijhk − C

(1)
ijhk

) 〈

ũβ
⋄∗

h,k (x )
〉∣
∣
∣
ΩR2

, (A.14)

from which, considering the restriction on the power q (A.13), the second term on the right-
hand-side of eqn (A.6) is null at first-order in f

αij

(

C
(2)
ijhk − C

(1)
ijhk

) ∫

ΩR2

uβ
⋄∗

h,k (x ) = o(f). (A.15)

Considering results (A.9) and (A.15), the mutual energy in the RVE (A.3)3 is null at first-order
in f and proposition (48) follows. �

10In the first application of the divergence theorem, uβ⋄∗

= uβ⋄∗

, eqn (45), is considered on the boundary
∂ΩR, so that

∫

ΩR

u
β⋄∗

h,k (x ) = β
⋄∗

hlm

∫

∂ΩR

nkxlxm, (A.7)

while, in the second application, the kinematically admissible displacement field uβ⋄∗

, eqn (44), is considered
within the RVE, yielding

β
⋄∗

hlm

∫

∂ΩR

nkxlxm = 2β⋄∗

hlk

∫

ΩR

xl, (A.8)

so that the geometrical property GP1 for the RVE leads to eqn (A.9).
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A.2 Lemma 2: Null mutual α–β energy term for the homogeneous SGE

Statement. When a quadratic displacement u∗, eqn (45), and the normal component of its
derivative Du

∗ are applied on the boundary of a SGE satisfying the geometrical property GP1,
the strain energy is given by eqn (50).

Proof. By the superposition principle, the fields originated by the application of the boundary
conditions (u∗ = u

α+u
β⋄∗

, Du
∗ = Du

α+Du
β⋄∗

) can be obtained as the sum of the respective
fields arising from the boundary conditions (uα, Du

α) and (uβ⋄∗

, Du
β⋄∗

) in the forms

ε(x ) = εα(x ) + εβ
⋄∗

(x ), χ(x ) = χα(x ) + χβ⋄∗

(x ),

σ(x ) = σα(x ) + σβ⋄∗

(x ), τ (x ) = τα(x ) + τ β⋄∗

(x ),
(A.16)

(the latter calculated through the constitutive eqn (10)) so that the strain energy (26)2 becomes

WSGE
eq (u∗, Du

∗) = WSGE
eq (uα, Du

α) +WSGE
eq (uβ⋄∗

, Du
β⋄∗

)
︸ ︷︷ ︸

direct energy

+WSGE
eq (uα, Du

α;uβ⋄∗

, Du
β⋄∗

)
︸ ︷︷ ︸

mutual energy

(A.17)
where

WSGE
eq (uα, Du

α) =
1

2

∫

Ωeq

[

εαij(x )C
eq
ijhkε

α
hk(x ) + χα

ijl(x )A
eq
ijlhkmχα

hkm(x )
]

,

WSGE
eq (uβ⋄∗

, Du
β⋄∗

) =
1

2

∫

Ωeq

[

εβ
⋄∗

ij (x )Ceq
ijhkε

β⋄∗

hk (x ) + χβ⋄∗

ijl (x )A
eq
ijlhkmχβ⋄∗

hkm(x )
]

,

WSGE
eq (uα, Du

α;uβ⋄∗

, Du
β⋄∗

) =

∫

Ωeq

[

εαij(x )C
eq
ijhkε

β⋄∗

hk (x ) + χα
ijl(x )A

eq
ijlhkmχβ⋄∗

hkm(x )
]

.

(A.18)
Application of the boundary condition (uα, Du

α) on ∂Ωeq leads to the displacement field
u
α(x ), eqn (44), so that χα(x ) = 0 and, considering the symmetries of the equivalent local

constitutive tensor Ceq, the mutual energy simplifies in the local contribution

WSGE
eq (uα, Du

α;uβ⋄∗

, Du
β⋄∗

) = αijC
eq
ijhk

∫

Ωeq

uβ
⋄∗

h,k (x ). (A.19)

Through two applications of the divergence theorem and using the geometrical property GP1
of the SGE, the mutual energy (A.19) is null and then proposition (50) follows. �

A.3 Lemma 3: β term in the strain energy WC
RV E at first-order in f

Statement. When a quadratic displacement u
β⋄∗

, eqn (45) with α = 0, is applied on the
RVE boundary, the strain energy at first-order in the concentration f is given by eqn (55).

Proof. The strain energy WC
RV E(u

β⋄∗

) stored in the RVE, when a quadratic displacement
field u

β⋄∗

(45) is applied on its boundary ∂ΩRV E , is bounded by (see Gurtin, 1972)
∫

∂ΩRV E

σSA
ij niu

β⋄∗

j − UC
RV E(σ

SA) ≤ WC
RV E(u

β⋄∗

) ≤ WC
RV E(ε

KA), (A.20)

where εKA is a kinematically admissible (satisfying the kinematic compatibility relation (1)1
and the imposed displacement boundary conditions) strain field, σSA is a statically admissible
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(satisfying the equilibrium condition, eqn (4) with τ = 0) stress field, while UC
RV E(σ

SA) and
WC

RV E(ε
KA) are respectively the following stress and strain energies

UC
RV E(σ

SA) =
1

2

∫

ΩR

σSA
ij (x )C−1

ijhk(x )σ
SA
hk (x ),

WC
RV E(ε

KA) =
1

2

∫

ΩR

εKA
ij (x )Cijhk(x )ε

KA
hk (x ).

(A.21)

Considering the kinematically admissible strain field

εKA
ij = (β⋄∗

ijk + β⋄∗

jik)xk, (A.22)

and assuming the geometrical properties GP2 and GP3, an estimate for the upper bound in
eqn (A.20) is the strain energy WC

RV E(ε
KA) given by eqn (B.5)1 (Appendix B.1), so that

WC
RV E(u

β⋄∗

) ≤ 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f). (A.23)

Considering now the statically admissible stress field

σSA
ij = 2C∗

ijhkβ
⋄∗

hklxl, (A.24)

where C
∗ is a first-order perturbation in f to the material matrix C

(1), eqn (43), and assuming
the geometrical property GP2, the stress energy UC

RV E(σ
SA) is given by eqn (B.5)2 (Appendix

B.1). Moreover, since the application of the divergence theorem yields
∫

∂ΩR

σSA
ij niu

β⋄∗

j = 4ρ2Ω
(

C
(1)
ijhk + f Ĉijhk

)

β⋄∗

ijlβ
⋄∗

hkl, (A.25)

an estimate is obtained for the lower bound in eqn (A.20) as

WC
RV E(u

β⋄∗

) ≥ 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f), (A.26)

which, together with the upper bound (A.23), leads to eqn (55). �

A.4 Lemma 4: β term in the strain energy WSGE
eq at first-order in f .

Statement. When a quadratic displacement uβ⋄∗

, eqn (45) with α = 0, and the normal com-
ponent of its gradient Du

β⋄∗

are imposed on the boundary of the homogeneous SGE equivalent
material, the strain energy at first-order in the concentration f is given by eqn (56).

Proof. The strain energy WSGE
eq (uβ⋄∗

, Du
β⋄∗

) stored in the SGE, when a quadratic displace-

ment field u
β⋄∗

(45) and the normal component of its gradient Du
β⋄∗

are imposed on its
boundary ∂Ωeq, is bounded as (Appendix C)

∫

∂Ωeq

(

tSAi uβ
⋄∗

i + TSA
i Duβ

⋄∗

i

)

+

∫

Γeq

ΘSA
i uβ

⋄∗

i − USGE
eq (σSA, τSA) ≤

≤ WSGE
eq (uβ⋄∗

, Du
β⋄∗

) ≤ WSGE
eq (εKA,χKA),

(A.27)

with






tSAk = njσ
SA
jk − ninjDτSAijk − 2njDiτ

SA
ijk + (ninjDlnl −Djni) τ

SA
ijk ,

TSA
k = ninjτ

SA
ijk ,

on ∂Ωeq, (A.28)
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and
ΘSA

k = [[ emljnismnlτ
SA
ijk ]] , onΓeq, (A.29)

where εKA and χKA are kinematically admissible strain and curvature fields (satisfying the
kinematic compatibility relation (1) and the imposed displacement boundary conditions), σSA

and τSA are statically admissible stress and double-stress fields (satisfying the equilibrium
equation (4)), while USGE

eq (σSA, τSA) and WSGE
eq (εKA,χKA) are respectively the stress and

the strain energies given by

USGE
eq (σSA, τSA) =

1

2

∫

Ωeq

σSA
ij (x )Ceq−1

ijhk σ
SA
hk (x ) +

1

2

∫

Ωeq

τSAijh (x )A
eq−1

ijhklmτSAklm(x ),

WSGE
eq (εKA,χKA) =

1

2

∫

Ωeq

εKA
ij (x )Ceq

ijhkε
KA
hk (x ) +

1

2

∫

Ωeq

χKA
ijh (x )A

eq
ijhklmχKA

klm(x ).

(A.30)

Considering the kinematically admissible strain εKA (A.22) and curvature field

χKA
ijk = 2β⋄∗

kij , (A.31)

and assuming the geometrical property GP2, an estimate for the upper bound in eqn (A.27) is
the strain energy WSGE

eq (εKA,χKA) given by eqn (B.8)1 (Appendix B.2) as

WSGE
eq (uβ⋄∗

, Du
β⋄∗

) ≤ 2Ωβ⋄∗

ijlβ
⋄∗

hkm

(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

. (A.32)

Considering the statically admissible stress σSA (A.24) and double-stress field

τSAjli = 2Aeq
jlikmhβ

⋄∗

hkm, (A.33)

where C∗ is a first-order perturbation in f to the material matrix C
eq, eqn (42), and assuming the

geometrical property GP2, the stress energy USGE
eq (σSA, τSA) is given by eqn (B.9) (Appendix

B.2). Moreover, since the application of the divergence theorem yields
∫

∂Ωeq

(

tSAi uβ
⋄∗

i + TSA
i Duβ

⋄∗

i

)

+

∫

Γeq

ΘSA
i uβ

⋄∗

i = 4ρ2Ω
[

C
eq
ijhk + f

(

Ĉijhk − C̃ijhk

)]

β⋄∗

ijnβ
⋄∗

hkn,

(A.34)
an estimate is obtained for the lower bound in eqn (A.27) as

WSGE
eq (uβ⋄∗

, Du
β⋄∗

) ≥ 2Ωβ⋄∗

ijlβ
⋄∗

hkm

(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

+ o(f), (A.35)

which, together with the upper bound (A.32), leads to eqn (56). �

B Elastic energies based on the kinematically admissible dis-
placement field u

β⋄∗

(44)

In this Appendix it is assumed α = 0. The field u
β⋄∗

, eqn (44), is a kinematically admissible
displacement for both boundary conditions uβ⋄∗

, eqn (46), and (uβ⋄∗

, Du
β⋄∗

), eqn (49), applied
on the boundary of the RVE and the SGE, respectively. The related strain and stress energies
in the RVE and in the SGE are obtained below.

• In Section B.1 the strain energies are computed with the kinematically admissible defor-
mation εKA, eqn (A.22), and curvature χKA, eqn (A.31), originated by the kinematically
admissible displacement uβ⋄∗

, eqn (44);
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• In Section B.2 the stress energies are computed with the statically admissible stress σSA,
eqn (A.24), and double-stress τSA, eqn (A.33), originated by the above mentioned kine-
matically admissible fields εKA and χKA within a homogeneous material with constitutive
tensors C∗ and A

eq.

B.1 Strain and stress energies in the RVE

The kinematically admissible deformation εKA, eqn (A.22), and the statically admissible stress
σSA, eqn (A.24), provide the strain and stress energies (A.21) in the RVE

WC
RV E(ε

KA) =

∫

Ω
2Cijhk(x )β

⋄∗

ijlβ
⋄∗

hkmxlxm,

UC
RV E(σ

SA) =

∫

Ω
2C∗

ijlmC
−1
ijhk(x )C

∗

hkrsβ
⋄∗

lmnβ
⋄∗

rstxnxt,

(B.1)

which, introducing the definition (33) of the Euler tensor of inertia E , can be rewritten as

WC
RV E(ε

KA) = 2
[

C
(1)
ijhkElm(ΩC

1 ) + C
(2)
ijhkElm(ΩC

2 )
]

β⋄∗

ijlβ
⋄∗

hkm,

UC
RV E(σ

SA) = 2C∗

ijlm

{

C
(1)−1

ijhk Ent(Ω
C
1 ) + C

(2)−1

ijhk Ent(Ω
C
2 )
}

C
∗

hkrsβ
⋄∗

lmnβ
⋄∗

rst.

(B.2)

Assuming the geometrical property GP2 and considering the identity (30), the strain and stress
energies (B.2) simplify as

WC
RV E(ε

KA) = 2ρ2Ω






C
(1)
ijhk − f

(

ρ(2)

ρ

)2
[

C
(1)
ijhk − C

(2)
ijhk

]






β⋄∗

ijlβ
⋄∗

hkl,

UC
RV E(σ

SA) = 2ρ2ΩC∗

ijlm






C
(1)−1

ijhk − f

(

ρ(2)

ρ

)2
[

C
(2)−1

ijhk − C
(1)−1

ijhk

]






C
∗

hkrsβ
⋄∗

lmnβ
⋄∗

rsn.

(B.3)

Assuming the geometrical property GP3

ρ(2) = ρ̃(2)f r + o(f), (B.4)

with 0 < r ≤ 1, and C
∗ as a first-order perturbation in f to the material matrix C

(1), eqn (43),
the strain and the stress energies are given in the dilute case (f ≪ 1) by

WC
RV E(ε

KA) = 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f),

UC
RV E(σ

SA) = 2ρ2Ω
(

C
(1)
ijhk + 2f Ĉijhk

)

β⋄∗

ijlβ
⋄∗

hkl + o(f).
(B.5)

B.2 Strain and stress energies in the SGE

The kinematically admissible deformation and curvature fields [εKA, eqn (A.22); χKA, eqn
(A.31)] together with the statically admissible stress and double-stress fields [σSA, eqn (A.24);
τSA, eqn (A.33)] provide the strain and stress energies (A.30) in the SGE

WSGE
eq (εKA,χKA) =

∫

Ω
2
[

C
eq
ijhkxlxm + A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) =

∫

Ω
2
{

C
∗

ijlmC
eq−1

ijhk C
∗

hkrsxnxt + A
eq
mnlstr

}

β⋄∗

lmnβ
⋄∗

rst,

(B.6)
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which, introducing the definition (33) for the Euler tensor of inertia E , can be rewritten as

WSGE
eq (εKA,χKA) = 2

[

C
eq
ijhkElm(ΩSGE

eq ) + ΩSGE
eq A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) = 2

{

C
∗

ijlmC
eq−1

ijhk C
∗

hkrsEnt(Ω
SGE
eq ) + ΩSGE

eq A
eq
mnlstr

}

β⋄∗

lmnβ
⋄∗

rst.

(B.7)

Assuming the geometrical property GP2, the strain and stress energies (B.7) simplify as

WSGE
eq (εKA,χKA) = 2Ω

[

ρ2Ceq
ijhkδlm + A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) = 2Ω

{

ρ2C∗

ijlmC
eq−1

ijhk C
∗

hkrsδnt + A
eq
mnlstr

}

β⋄∗

lmnβ
⋄∗

rst.

(B.8)

Finally, assuming C
∗ as a first-order perturbation in f to the equivalent local tensor C

eq, eqn
(42), the stress energy is given in the dilute case (f ≪ 1) by

USGE
eq (σSA, τSA) = 2Ω

{

ρ2
[

C
eq
ijhk + 2f

(

Ĉijhk − C̃ijhk

)]

δlm + A
eq
jlikmh

}

β⋄∗

ijlβ
⋄∗

hkm + o(f).

(B.9)

C Energy bounds for SGE Material

Statement. When boundary displacement conditions u , Du are imposed on the boundary
∂Ωeq of a SGE, the strain energy WSGE

eq (u , Du) is bounded as

∫

∂Ωeq

(
tSAi ui + TSA

i Dui
)
+

∫

Γeq

ΘSA
i ui − USGE

eq (σSA, τSA) ≤ WSGE
eq (u , Du) ≤ WSGE

eq (εKA,χKA),

(C.1)
where εKA and χKA are kinematically admissible strain and curvature fields (satisfying the
kinematic compatibility relation (1) and the imposed displacement boundary conditions), σSA

and τSA are statically admissible stress and double-stress fields (satisfying the equilibrium
equation (4)) and the other statically admissible quantities t

SA, TSA and ΘSA are given by
eqns (A.28) and (A.29), while USGE

eq (σSA, τSA) and WSGE
eq (εKA,χKA) are respectively the

stress and the strain energies, eqns (A.30)1 and (A.30)2.

Proof. Considering the displacement field u
eq solution to the displacement boundary condi-

tions u , Du and the related statical fields σeq and τ eq in equilibrium, through the difference
fields ∆εKA, ∆χKA, ∆σSA, ∆τSA the kinematically and statically admissible fields can be
defined as

εKA = εeq +∆εKA, χKA = χeq +∆χKA,

σSA = σeq +∆σSA, τSA = τ eq +∆τSA.
(C.2)

Using the discrepancy fields ∆εKA and ∆χKA the term representing the upper bound in eqn
(C.1) can be rewritten as

WSGE
eq (εKA,χKA) = WSGE

eq (u , Du) +WSGE
eq (∆εKA,∆χKA)

+

∫

Ωeq

(

Cijhkε
eq
ij∆εKA

hk + Aijklmnχ
eq
ijk∆χKA

lmn

)

,
(C.3)
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which provides a proof to the upper bound, since the strain energy is positive definite and the
third term in the RHS of eqn (C.3) is null by the principle of virtual work (3) with ∆u =
∆Du = 0 on the boundary.

Using the discrepancy fields ∆σKA and ∆τKA the term representing the lower bound in
eqn (C.1) can be rewritten as

∫

∂Ωeq

(
tSAi ui + TSA

i Dui
)
+

∫

Γeq

ΘSA
i ui − USGE

eq (σSA, τSA) = WSGE
eq (u , Du)− USGE

eq (∆σSA,∆τSA)

(C.4)
which provides a proof to the lower bound, since the strain energy is positive definite. �
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[11] Dal Corso, F. and Deseri. L. (2013) Residual stresses in random elastic composites: nonlocal
micromechanics-based models and first estimates of the representative volume element size.
Meccanica, 48 (8), 1901–1923.

[12] Dal Corso, F. and Willis, J.R. (2011) Stability of strain gradient plastic materials. J. Mech.
Phys. Solids. , 59, 1251–1267.

[13] Forest, S. (1998) Mechanics of Generalized Continua: Construction by Homogenization, J.
Phys. IV, 8, 39-48.

[14] Forest, S. and Trinh, D.K. (2011) Generalized continua and non-homogeneous boundary
conditions in homogenisation methods. Z. angew. Math. Mech. 91, 90–109.

20



Published in International Journal of Solids and Structures 50 (2013) 4010-4019
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.014

[15] Gauthier, R.D. (1982) Experimental Investigation on Micropolar Media, Mechanics of Mi-
cropolar Media, O. Brulin and R. K. T. Hsieh, eds., CISM Lecture Notes, World Scientific,
Singapore, 395-463.

[16] Gurtin, M.E. (1972) The linear theory of Elasticity. In Flugge, S., ed., Encyclopedia of
Physics VIa/2. Berlin, Springer. 1-295.

[17] Koiter, W.T. (1964) Couple-Stresses in the Theory of Elasticity, Parts I and II. Proc. K.
Ned. Akad. Wet., Ser. B: Phys. Sci., 67, 17-44.

[18] Lakes, R.S. (1986) Experimental Microelasticity of Two Porous Solids, Int. J. Solids Struct.
22, 55-63.

[19] Li, J. (2011) A micromechanics-based strain gradient damage model for fracture prediction
of brittle materials. Part I: Homogenization methodology and constitutive relations. Int. J.
Solids Struct. 48, 3336–3345.

[20] Mindlin, R.D. (1964) Micro-structure in linear elasticity. Archs ration. Mech. Analysis 16,
51–78.

[21] Mindlin, R.D. and Eshel, N.N. (1968) On First Strain-Gradient Theories in Linear Elas-
ticity. Int. J. Solids Struct. 4, 109.

[22] Ostoja-Starzewski, M., Boccara, S., and Jasiuk, I. (1999) Couple-Stress Moduli and Char-
acteristic Length of Composite Materials, Mech. Res. Comm. 26, 387-397.

[23] Pideri, C., and Seppecher, P. (1997) A second gradient material resulting from the homog-
enization of an heterogeneous linear elastic medium. Cont. Mech. and Therm.9, 241-257.

[24] Wang, X.L., and Stronge, W.J. (1999), Micropolar Theory for Two- Dimensional Stresses
in Elastic Honeycomb, Proc. R. Soc. Lond., Ser. A, 445, 2091-2116.

21


