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Abstract

Wrinkling is a commonly observed out-of-plane instability in membrane structures due to their extremely low
bending-to-stretching stiffness ratio. It has been extensively investigated for symmetric membrane geometries
and boundary conditions that induce planar non-uniform stress states by preventing the lateral contraction
at the edges, and is also known to potentially display self-restabilization. This study investigates an initially
flat, parallelogram-shaped hyperelastic membrane, focusing on the effect of the inclination angle that defines
its deviation from rectangular geometry. It is shown that wrinkling can occur either centrally or at the two
opposite obtuse-angled corners—even for small inclination angles—during stretching with unconstrained lateral
contraction, a condition under which the flat configuration for the rectangular counterpart remains always stable.
Three distinct evolutions of the wrinkling pattern are numerically identified, all ultimately leading to corner-
localized wrinkles. This final state may arise (i) directly, without a prior bifurcation, or after the appearance of
central wrinkling that either (ii) restabilizes or (iii) separates and migrates toward the corners. A closed-form
expression for the critical wrinkling condition is derived by combining a perturbation approach with an energy-
based method in the framework of linear elasticity. This provides an accurate estimate of the onset and pattern
of central wrinkling. The present findings reveal new pathways in wrinkling pattern evolution and introduce a
novel approach to unconventional boundary-value problems, with potential applications ranging from lightweight
structural systems to flexible electronics.

Keywords: Self-restabilization; quasi-rectangular membranes; wrinkling pattern morphing; perturbation ap-
proach.

1 Introduction

Thin membranes and films are highly flexible bi-dimensional structures abundant in nature (cells, insect wings, and
leaves) and widely manufactured for diverse engineering applications—including architecture, aerospace, electron-
ics, and medicine—due to their lightweight and adaptable nature. These structures offer mechanically efficient and
aesthetically appealing solutions for applications spanning from covering of large spaces [12] to hosting electronic
components in flexible devices [33]. Their extremely low bending-to-stretching stiffness ratio however facilitates
the onset of structural elastic instabilities, posing a significant challenge by compromising both structural integrity
and visual appeal. Among the possible instabilities, membranes are particularly prone to wrinkling, exhibiting a
sinusoidal-like out-of-plane displacement on the surface, with a short wavelength aligned to the direction of the
principal compressive stress, creating localized curvature. Wrinkling is commonly experienced in everyday life
with items like plastic wraps, clothing fabrics, curtains, and balloons.
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State of the art: Tension-field theory, initially developed in 1929 [57] and later extended [45], has been the
foundational framework for analyzing wrinkling instability in thin-walled structures. This two-dimensional non-
linear model assumes that wrinkles have infinitesimal wavelengths, with the material being considered to have
no compressive bearing capacity. However, despite several enhancements [50, 9] and generalizations [14, 49,
42], tension-field theory still faces limitations, particularly in its neglect of bending energy [13]. Consequently,
researchers have increasingly turned attention to more advanced plate and shell models that account for both
stretching and bending effects, such as the Föppl–von Kármán model and its extended version, the latter tak-
ing into account the large in-plane deformations of the membrane. Through these models, the analysis of thin
sheets gained more precision also in terms of predicting the post-critical response and the corresponding wrinkling
morphology.

Deep insights into the wrinkling mechanisms have then been gained in several different setups, mainly restricted
to axial or axis symmetry conditions. As expected, the position of wrinkling within a membrane changes with
variations in the membrane geometry and loading conditions. Wrinkling may be spread over the whole membrane,
as under shear loading [64], or emerges as an isola-center bifurcation in the two-axis symmetric problem of a
stretched rectangular membrane with constrained lateral contraction at the edges [27, 52, 58]. Localized wrinkling
can also occur near the membrane’s free edge, with wrinkles oriented orthogonally to the boundary, as observed in
elastic plate stamping [26], elastically supported, prestressed incompressible isotropic plates [15], spinning elastic
membranes [10], and membranes under pressure loading [11]. Alternatively, wrinkles may appear close to and
align parallel to the free edge, particularly in twisted, pre-stretched membranes [58]. Edge wrinkling has also been
investigated as instability patterns in growing curled petals and leaves [59].

In the context of inelastic membrane behaviour, the Mullins effect has been shown to induce a distinctive
wrinkling response: while no wrinkles appear during the initial loading, they emerge during the first unloading
and persist throughout all subsequent loading cycles [17].

Drawing an analogy with the restabilization of the trivial path observed in variable-length rods under com-
pression [2, 3], both theoretical and experimental investigations of highly stretched, initially isotropic thin sheets
have revealed a surprising restabilization phenomenon [20, 21, 23, 34, 41, 48, 53, 69, 70]. In this context, wrin-
kle amplitude initially increases with stretching but subsequently diminishes as stretching continues, eventually
vanishing entirely—thereby demonstrating a recovery of stability of the flat configuration. Such a restabilization
phenomenon has been also addressed in orthotropic [35, 47] and anisotropic [22] membranes, as well as in soft
shells [62]. A recent analysis for anisotropic membrane has also disclosed the possibility of wrinkling reappearance
at the same central location after its disappearance due to restabilization [8].

Wrinkling instability has been also studied in membranes attached to a substrate, showing wrinkling patterns
in trapezoidal film/substrate bilayers [68], characterized by period doubling [67], with axisymmetric/diamond-like
mode transition [66], with hexagonal geometry in spheres and toroids with an elastic core [4, 29, 51, 61], with
smooth-wrinkle-ridge-sagging transitions [16], with crystallography on spherical surfaces [4], and in differentially
growing bilayers [46].

Owing to the complexity of stress fields within membranes and the potential involvement of nonlinearities, only
a limited number of studies have produced closed-form analytical solutions for predicting the critical conditions for
wrinkling and the resulting patterns. The observation of stretch-induced wrinkling in rectangular sheets [18] thus
motivated simplified buckling models for complex stress states lacking direct analytical solutions. Scaling laws for
wrinkle wavelength and amplitude have been established through energy minimization [6, 7, 38, 55], and energy-
based models for wavelength selection have been proposed [28]. Furthermore, the dependence of critical wrinkling
strain on aspect ratios has validated scaling relationships between applied stretch and wrinkling behaviour [7, 30,
44]. Finally, the transition between periodic wrinkling and global buckling has been analytically predicted for a
thin elastic ring bound to an equally curved 2D substrate that contains an inner cavity [32].

The deep understanding of wrinkling mechanisms unlocked innovative applications across several technolog-
ical fields. Recent advancements have leveraged the unique properties of wrinkling in auxetic membranes and
nematic elastomer sheets to achieve on-demand, non-standard wrinkling patterns, suppressing unwanted instabil-
ities through microstructure formation [43, 56]. These developments are critical for lightweight deployable space
structures, such as solar sails and antennas, where precise control of membrane behaviour enhances performance
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[27]. In terrestrial applications, wrinkling informs the design of complex fabric roofs and smart mechanical de-
vices, including dielectric elastomeric layers and bilayer gel beams, where controlled instabilities enable structural
morphing, sensing, and actuation in biomedical and soft robotics contexts [40].

For a further detailed overview of tension-induced film wrinkling, readers are directed to the review by Wang
et al. [63].

Article contribution: The mechanics and wrinkling instability of an unconventional class of two-dimensional
structures—specifically, initially flat, parallelogram-shaped hyperelastic membranes—are investigated under a
stretching process that allows lateral contraction. In comparison with the usual setups analyzed in wrinkling prob-
lems, besides removing the edge constraint of zero lateral contraction, the investigated boundary-value problem is
also less symmetric, as it has a rotational symmetry of order 2, and it allows refined tuning of the inhomogeneity
level of the mechanical fields through the inclination angle θ0, which quantifies the deviation of the undeformed
parallelogram shape from the rectangular geometry (θ0 = 0). The inhomogeneous fields and wrinkling phenom-
ena are investigated for varying initial inclination angle θ0 and the in-plane aspect ratio β. By contrast to the
limiting case of a rectangular membrane allowed to laterally contract under elongation—for which the stress field
remains purely uniaxial under tension, and no compressive stresses arise during elongation, thereby precluding
instability—it is shown that introducing an inclination angle generates a compressive principal stress component,
which can induce wrinkling even for small deviations (|θ0| ≪ 1) from the rectangular configuration.

Finite Element analyses reveal that when wrinkling appears, it develops either in the central region of the
membrane or close to the two obtuse-angled corners, Fig. 1. More specifically, three distinct evolutions of the
wrinkling pattern are identified, all ultimately leading to the appearance of wrinkles at the corners. The key
difference between these evolutions lies in the behaviour prior to this final state: central wrinkling may either
not appear at all (case θ0 = 2◦ in Fig. 1) or manifest during an earlier stage of deformation. In the latter case,
it either restabilizes (through a complete wrinkling disappearance, case θ0 = 2.9◦ in Fig. 1) or separates and
migrates toward the two corners (cases θ0 = 3◦ and 4◦ in Fig. 1) as the elongation strain ϵ increases.

The numerical analysis is complemented by an analytical treatment within a linear elasticity framework. Using
a perturbation approach based on small values of the initial inclination angle θ0, a second-order expansion of the
stress field is derived. This analysis identifies the cause of potential central wrinkling formation as a second-order
compressive principal stress within the parallelogram membrane. A relatively simple closed-form expression is
finally obtained for evaluating the critical elongation strain and the central wrinkling pattern by considering the
approximated stress fields within an energy principle. The analytical expression is shown to successfully predict
the wrinkling condition disclosed through Finite Element simulations with varying of the parallelogram membrane
geometry, Fig. 2.

Article outline: The geometrically extended version of the Föppl–von Kármán model is recalled in Sect. 2,
along with the derivation of the constitutive relations for specific choices of classical hyperelastic materials and a
description of the membrane geometry and boundary conditions. Details of the Finite Element analyses, numerical
results for the planar response, critical conditions, post-critical response, and wrinkling pattern evolution, along
with the related discussion, are provided in Sect. 3. The perturbation approach is applied in Sect. 4 to obtain
an approximated analytical description of the planar stress fields, which is in turn used into the energy approach
to evaluate closed-form expressions for predicting the critical elongation strain of wrinkling and its pattern. The
results in terms of both the planar stress field description and the critical deformation and mode are successfully
validated through comparison with the numerical predictions. Concluding remarks are finally provided in Sect. 5.

Article significance: This study introduces an unconventional class of boundary-value problems in which
lateral contraction remains unconstrained, leading to wrinkling instabilities despite the stress fields being less in-
homogeneous than those typically observed under classical clamped-edge conditions. Novel evolutions in wrinkling
patterns are revealed, including the formation of a second set of wrinkles close to the two opposite obtuse-angled
corners of the membrane after the stabilization of the initial central wrinkling. Another possible evolution involves
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Figure 1: Maps of the out-of-plane displacement w, normalized through division by the membrane thickness
t, showing the wrinkling pattern evolution at four stages of increasing elongation strain ϵ = {1.5, 7.8, 14, 30}%.
The maps are obtained from Finite Element simulations for five compressible Neo-Hookean membranes with the
same width-to-thickness ratio α = 1500 and (in-plane) aspect ratio β = 3, but differing in the initial inclination
angle θ0 defining the undeformed parallelogram shape. Homogeneous (green) color implies a planar state while
inhomogeneous color shows the wrinkling pattern, which appears aligned parallel with the elongation direction. In
addition to the case (θ0 = 1◦) that shows no out-of-plane displacement at every deformation stage, three different
types of evolutions are shown, all ending with wrinkle close to the two obtuse-angled corners.

the separation of the central wrinkles and their subsequent migration toward the two opposite corners. These nu-
merical findings are further supported by a closed-form analytical expression that predicts the critical elongation
strain leading to central wrinkling, along with the corresponding wrinkling pattern. This research paves the way
for designing and tuning the critical conditions and modes of wrinkling, offering valuable insights into how these
instabilities can be controlled. It opens up new opportunities for applications across a wide range of fields, from
enhancing the performance of lightweight structures to advancing wearable electronic devices.

2 Formulation

2.1 Mechanical model

The equilibrium equations governing the large strains of a hyperelastic membrane are derived by following the
geometrically extended version of the Föppl-von Kármán model (eFvK) [19, 21, 23]. The unloaded state of the
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Figure 2: Comparison of the out-of-plane displacement maps, disclosing the wrinkling pattern for β = 2 and
θ0 = 3◦ and 5◦, for β = 3 and θ0 = 5◦, and for β = 5 and θ0 = 5◦. An excellent agreement is found between
the patterns from finite element (FE) simulations (above) and from the analytical approach (bottom) in terms of
either the critical elongation strain ϵcr and of the wrinkling pattern. The corresponding analytical prediction of
the critical elongation strain ϵcr is also reported by highlighting the minimizing positive value of n defining the
wrinkling ansatz, Eq. (68).

membrane is assumed as initially flat and with a geometry described by a prism of domain volume V with thickness
t and a (flat) base domain Bx, of area A and for which t≪

√
A due to the thin membrane assumption. Describing

the undeformed position x in a three-dimensional Cartesian reference system through its coordinates x1–x2–z, the
undeformed membrane volume V is given by

V :=

{
x

∣∣∣∣{x1, x2} ∈ Bx, z ∈ [−1, 1]
t

2

}
. (1)

The deformation function f(x) = x + u(x1, x2, z), mapping the reference configuration x into the current one, is
considered to be described by a displacement vector u following the Kirchhoff hypothesis, for which the surface
normal to the mid-plane remains normal during deformation,

u(x1, x2, z) =


u1(x1, x2, z)

u2(x1, x2, z)

w(x1, x2)

 =


ũ1(x1, x2)

ũ2(x1, x2)

w(x1, x2)

− z


w,1(x1, x2)

w,2(x1, x2)

0

 , (2)

where (the subscript , γ represents the partial derivative ∂/∂xγ and) ũγ(x1, x2) and w(x1, x2) are the primary
kinematic fields, respectively representative of the in-plane and the out-of-plane displacement components of the
mid-plane surface along xγ (γ = 1, 2) and along z. By introducing the gradient operator ∇ = {∂/∂x1, ∂/∂x2, ∂/∂z}
and the deformation gradient F = ∇f = I+∇u, the (symmetric) Green-Lagrange strain tensor E =

(
FTF− I

)
/2

evaluated by considering the displacement vector u (2) finds the following decomposition

E(x1, x2, z) = E[p](x1, x2) + zE[χ](x1, x2) −
z2

4
E[q](x1, x2), (3)

where the tensors E[p], E[χ], and E[q] (whose components are reported in Appendix A.1) are respectively repre-
sentative of the constant, linear, and quadratic deformation contributions through the out-of-plane variable z.
Considering this decomposition and a hyperelastic response, the (volume) strain energy density ψ can be inte-
grated through the membrane thickness t to achieve the surface strain energy density Ψ as a function of E[p], E[χ],
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and E[q]

Ψ =

∫ t
2

− t
2

ψ (E) dz = Ψ
(
E[p],E[χ],E[q]

)
. (4)

By assuming an out-of-plane displacement w with small first- and second-gradients (
{
|∇sw|, t |∇2

sw|
}
≪ 1), the

surface strain energy density Ψ (4) can be approximated according to the extended Föppl-von Kármán theory as
the sum of membrane Ψ[m]

(
E[m]

)
and bending Ψ[b]

(
E[m], κ

)
energy contributions as [48, 60]

Ψ ≈ Ψ
(
E[m],κ

)
= t ψ[m]

(
E[m]

)
︸ ︷︷ ︸

Ψ[m](E[m])

+
t3

24
κ ·

∂2ψ[m]
(
E[m]

)
∂E[m]∂E[m]

∣∣∣∣∣
E[m]

κ︸ ︷︷ ︸
Ψ[b](E[m],κ)

, (5)

where E[m] and κ are respectively the (symmetric) membrane Green-Lagrange strain and curvature (or bending
strain) tensors, defined as the surface components of E[p] and E[χ]

E[m] =

E[p]
11 E

[p]
12

E
[p]
12 E

[p]
22

 =


ũ1,1 +

(ũ1,1)
2 + (ũ1,2)

2 + (w,1)
2

2

ũ1,2 + ũ2,1 + ũ1,1ũ2,1 + ũ1,2ũ2,2 + w,1w,2

2

ũ1,2 + ũ2,1 + ũ1,1ũ2,1 + ũ1,2ũ2,2 + w,1w,2

2
ũ2,2 +

(ũ2,1)
2 + (ũ2,2)

2 + (w,2)
2

2

 ,

κ =

E[χ]
11 E

[χ]
12

E
[χ]
12 E

[χ]
22

 = −

w,11 w,12

w,12 w,22

 ,
(6)

while ψ[m] is the reduced (volume) strain energy density evaluated through variational dimensional reduction by
the partial minimization over the out-of-plane strain components,

ψ[m]
(
E[m]

)
= min

{E[p]
13 ,E

[p]
23 ,E

[p]
33 }

ψ


 E[m]

E
[p]
13

E
[p]
23

E
[p]
13 E

[p]
23 E

[p]
33


 . (7)

Considering the second Piola-Kirchhoff stress, S = ∂ψ(E)/∂E, the partial minimization (7) is mechanically
equivalent to solving the through-thickness equilibrium that enforces plane stress conditions [24, 25], which is
expressed by

Sj3 =
∂ψ(E)

∂Ej3
= 0, j = 1, 2, 3. (8)

The constitutive relations for the membrane force N and bending moment M (symmetric) tensors per unit
undeformed length1 follow from the surface strain energy density Ψ (5), obtained under the extended Föppl-von
Kármán approximation, as

N =
∂Ψ
(
E[m],κ

)
∂E[m]

, M =
∂Ψ
(
E[m],κ

)
∂κ

, (9)

which, by considering the membrane and bending contributions (5), reduce to a nonlinear relation for the mem-
brane force N in the membrane Green-Lagrange strain E[m] and a linear relation for the bending moment M in
the curvature tensor κ (with stiffness possibly depending nonlinearly on the membrane Green-Lagrange strain
E[m])

N
(
E[m]

)
= t

∂ψ[m]
(
E[m]

)
∂E[m]

, M
(
E[m],κ

)
=
t3

12

∂2ψ[m]
(
E[m]

)
∂E[m]∂E[m]

κ, (10)

1It is noted that the resultant membrane force N and bending moment M are associated with an undeformed unit length as these
are evaluated through an integration of the second Piola-Kirchhoff stress distributions across the membrane thickness.
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where quadratic terms in the curvature κ are neglected in the expression for the membrane force N (10)1 since
t |∇2

sw| ≪ 1.
By introducing the 2D (membrane) identity tensor Is, the outward unit-normal n and the unit tangent t

vectors along ∂Bx, the equilibrium of the extended Föppl-von Kármán membrane is governed by the indefinite
equations (derivation details are deferred to Appendix A.2){

∇s · (∇s ·M + N∇sw) = 0,

∇s · [(Is + ∇sũ)N] = 0.
forx1, x2 ∈ Bx, (11)

These are complemented by the dual set of stress-free and kinematic boundary conditions on the boundary ∂Bx

of the (flat) surface Bx,
n ·Mn = 0, or (∇sw) · n = w,n,[
N∇sw + ∇s ·M + t · (∇s (Mt))

]
· n = 0, or w = w,

(Is + ∇sũ)Nn = 0, or ũ = u,

forx1, x2 ∈ ∂Bx, (12)

and the dual set of stress-free and kinematic boundary condition at the possible corner point Γj along ∂Bx

(j = 1, ..., Q)
Jn ·MtK|Γj

= 0, or w|Γj
= w, j = 1, ..., Q, (13)

where (the symbol J·K stands for the jump value of the relevant argument at the specific corner point, and) u, w,
and w,n are the imposed in-plane displacement, out-of-plane displacement and its normal derivative, respectively.

2.2 Hyperelastic constitutive models

Compressible Neo-Hookean (NH) model. The strain energy density ψNH associated to the compressible
Neo–Hookean (NH) material is defined as [31]

ψNH (E) =
1

2

{
µ

[
tr (I + 2E)

3
√

det (I + 2E)
− 3

]
+K

[√
det (I + 2E) − 1

]2}
, (14)

where µ and K are the ground-state shear and bulk moduli, the latter connected to the ground Lamé constant λ
through K = λ+2µ/3. As the partial minimization (8) performed on the strain energy density ψNH (E) (14) leads

to a set of nonlinear equations for the out-of-plane strains E
[p]
i3

(
E[m]

)
(i = 1, 2, 3), the reduced strain energy density

ψ
[m]
NH

(
E[m]

)
cannot be expressed in a closed form and must be evaluated numerically. Then, nonlinear relations for

the membrane force NNH
(
E[m]

)
and bending moment MNH

(
E[m],κ

)
follows through the constitutive relation

(10), the latter with a bending stiffness varying with the membrane strain E[m] (except in the small-strain limit).

Saint Venant–Kirchhoff (SVK) model. The strain energy density ψSVK is given for the Saint Venant–
Kirchhoff (SVK) material by [54]

ψSVK(E) =
1

2

{
λ [tr(E)]2 + 2µ tr

(
E2
)}

. (15)

Being the strain energy ψSVK (E) (15) a quadratic form in the Green-Lagrange strain E, the partial minimization
(8) leads to a set of linear equations whose solution is given by the following out-of-plane strain components

E13 = E23 = 0, E33 = −λ(E11 + E22)

λ+ µ
, (16)
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and therefore the reduced strain energy density ψ
[m]
SVK

(
E[m]

)
follows as

ψ
[m]
SVK

(
E[m]

)
=

1

2

{
λps
[
tr
(
E[m]

)]2
+ 2µ tr

((
E[m]

)2)}
, (17)

where λps is the Lamé constant under plane stress conditions, λps = 2λµ/(λ + 2µ). By considering the relation
connecting the Lamé constants λ and µ to the Young’s modulus E and Poisson’s ratio ν, and by introducing the
membrane bending stiffness D,

λ =
E ν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, D =

E t3

12(1 − ν2)
, (18)

the membrane force NSVK and bending moment MSVK reduce to linear functions of the membrane Green-Lagrange
strain E[m] and of the curvature κ (with constant bending stiffness D), respectively,

NSVK
(
E[m]

)
=

E t

1 − ν2

[
ν tr

(
E[m]

)
Is + (1 − ν)E[m]

]
, MSVK (κ) = D

[
ν tr

(
κ
)
Is + (1 − ν)κ

]
. (19)

Linear elastic (LE) model. When the displacement gradient is sufficiently small (|∇u| ≪ 1), the higher-order
(nonlinear) terms become negligible. It follows that the Green–Lagrange strain E and its membrane counterpart
E[m] reduce to the corresponding linearized strain tensors ϵ and ϵ[m], namely E = ϵ =

[
∇u + (∇u)T

]
/2 and

E[m] = ϵ[m] =
[
∇sũ + (∇sũ)T

]
/2, and therefore

ϵ
[m]
11 = ũ1,1, ϵ

[m]
12 =

ũ1,2 + ũ2,1
2

, ϵ
[m]
22 = ũ2,2. (20)

In this circumstance, both the compressible Neo-Hookean (14) and Saint Venant–Kirchhoff (17) models reduce
to the linear elastic (LE) model by providing the celebrated linear elastic expressions of the Föppl-von Kármán
plate [5, 54] for the membrane force NLE and bending moment MLE

NLE
(
ϵ[m]

)
=

E t

1 − ν2

[
ν tr

(
ϵ[m]

)
Is + (1 − ν) ϵ[m]

]
, MLE (κ) = D

[
ν tr

(
κ
)
Is + (1 − ν)κ

]
. (21)

2.3 Geometry and boundary conditions

In contrast to the rectangular and circular geometries with edge contraction prevented along portions of their
boundaries, which are usually considered to investigate wrinkling, a parallelogram-shaped membrane that is free to
contract laterally is considered here, Fig. 3 (left). Differently from the conventional setups, this ‘unconventional’
configuration allows refined tuning of the inhomogeneity level through the obliquity angle (π/2 − θ0) of the
parallelogram. In particular, it leads to less inhomogeneous mechanical fields during membrane elongation, as
it avoids the strong edge-decay effect typically associated with constrained lateral contraction. Moreover, the
mechanical fields smoothly converge to the homogeneous solution in the right-angle limit (θ0 = 0), where the
configuration reduces to a rectangular membrane under uniform tension. The low level of inhomogeneity can be
appreciated from Figure 4, where the deformed configuration for an elongation strain ϵ = 44% is reported as result
of a planar Finite Element simulation (Sect. 3).

The undeformed base domain Bx of parallelogram shape is considered to have two sides parallel to the x2-axis,
while the other two are inclined with respect to the x1-axis by the initial (undeformed) inclination angle θ0 (Fig. 3,
left),

Bx :=

{
x| − L

2
≤ x1 ≤

L

2
, −W

2
+ x1 tan θ0 ≤ x2 ≤

W

2
+ x1 tan θ0

}
, (22)

where L and W denote the undeformed length and width of the original parallelogram flat membrane.

8



Published in Journal of the Mechanics and Physics of Solids (2026) 208: 106461
doi: https://doi.org/10.1016/j.jmps.2025.106461

Figure 3: (Left) Undeformed parallelogram geometry of the hyperelastic membrane and boundary conditions.
(Right) Reparameterization of the physical parallelogram domain Bx on the auxiliary unit square domain Bξ

through the transformation matrix A (32).

Figure 4: Undeformed (gray) and deformed (green) planar configurations for the considered parallelogram-shaped
membrane, the latter under boundary conditions (27)3, (28), and (29) described by an elongation strain ϵ. A
deformed mesh is reported as a result from Finite Element simulation (Sect. 3) for ϵ = 44%. The current
inclination angle θ corresponding to Eq. (37) is also shown as a measure of the (average) inclination of the stress-
free edges.

For the following analysis, it is instrumental to introduce two dimensionless parameters defining the width-to-
thickness ratio α and the (in-plane) aspect ratio β as

α =
W

t
≫ 1, β =

L

W
. (23)

The boundary ∂Bx of the domain Bx can be described as the union of four portion boundaries ∂B[a]
x , ∂B[b]

x , ∂B[l]
x ,

and ∂B[r]
x defined as

∂B[a]
x

∂B[b]
x

}
:=

{
x| − L

2
≤ x1 ≤

L

2
, x2 = ±W

2
+ x1 tan θ0

}
,

∂B[l]
x

∂B[r]
x

}
:=

{
x|x1 = ∓L

2
, −W ± L tan θ0

2
≤ x2 ≤

W ∓ L tan θ0
2

}
,

(24)

associated with the following corresponding outward unit normal vectors

n[a] = −n[b] =

{
− sin θ0

cos θ0

}
, n[r] = −n[l] =

{
1

0

}
. (25)
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The hyperelastic parallelogram is subject to different boundary conditions along the different portion of its bound-

ary (Fig. 3, left). These correspond to traction-free boundary condition along B[a]
x and B[b]

x ,
n ·Mn = 0,[
N∇sw + ∇s ·M + t · (∇s (Mt))

]
· n = 0,

(Is + ∇sũ)Nn = 0,

for x1, x2 ∈ ∂B[a]
x ∪ B[b]

x , (26)

and to the presence of tangential rollers along ∂B[l]
x and ∂B[r]

x , namely
e1 ·Me1 = 0,

w = 0,

[(Is + ∇sũ)Ne1] · e2 = 0,

for x1, x2 ∈ ∂B[l]
x ∪ B[r]

x , (27)

where e1 and e2 are the unit vectors respectively parallel to the x1 and x2 axis, and complemented by the following
prescribed displacement along x1

ũ1 = 0, for x1, x2 ∈ ∂B[l]
x , and ũ1 = ϵL, for x1, x2 ∈ ∂B[r]

x , (28)

where ϵ is the imposed elongation strain, ϵ > 0. In order to avoid the possibility for rigid-body motions along x2,
a corresponding null displacement component is considered for the acute-angled corner with negative coordinates,

ũ2 = 0, for x1, x2 ∈ Γlb ≡ ∂B[l]
x ∩ ∂B[b]

x , (29)

The lateral contraction of the parallelogram membrane during stretching is enabled by the presence of tangential

rollers placed along the boundaries ∂B[l]
x and ∂B[r]

x , as prescribed by the boundary condition (27)3. This boundary
condition can be experimentally realized by exploiting the Saint-Venant fixture presented in [39]. In standard
wrinkling analyses, the rollers are replaced by clamps to inhibit lateral contraction, and the governing equations
therefore differ from the set (26)-(29) only in the substitution of boundary condition (27)3 with ũ · t = 0.

Section 3 demonstrates the rich and diverse spectrum of wrinkling patterns produced in this mechanical
problem.

2.4 Reparameterization of the parallelogram domain Bx onto the unit square Bξ

Introducing the auxiliary (normalized) coordinates ξ1 and ξ2, the parallelogram domain Bx can be transformed
through the uniform linear transformation

ξ = A(β, θ0)x, (30)

onto a unit square domain Bξ (and vice versa), defined as (Fig. 3, right)

Bξ :=

{
ξ| − 1

2
< ξ1 <

1

2
, −1

2
< ξ2 <

1

2

}
. (31)

The linear uniform transformation is described by the (non-singular) transformation matrix A(β, θ0) given by

A(β, θ0) =
1

W

 1

β
0

− tan θ0 1

 . (32)

The introduction of the auxiliary coordinates ξ1 and ξ2 is instrumental in the following analysis to either simplify
the identification of points within the parallelogram domain and performing the perturbation approach to achieve
an approximated equation ruling the critical elongation strain ϵcr for the realization of central wrinkling.
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3 Wrinkling, self-restabilization, and re-wrinkling from numerical simulations

The evolution of the hyperelastic parallelogram-shaped membrane is investigated under the monotonic increase
of the elongation strain ϵ to uncover the potential bifurcation (critical) conditions from the trivial path. These
conditions are found to provide to the membrane a smooth transition from a fully planar state to a non-planar
state (or vice versa), associated with the appearance, disappearance, and reappearance of wrinkles, and the
corresponding post-critical response. Due to the complexity of analytically solving the non-linear differential
problem (11), (26)-(29) governing the equilibrium of hyperelastic parallelogram-shaped membranes, the Finite
Element (FE) method is employed (Sect. 3.1). The investigation reveals a diverse spectrum of mechanical
responses, with the membrane potential to restabilize wrinkling and subsequently rewrinkle in a different location
(Sect. 3.2). To provide motivation for this novel response, an in-depth analysis of the in-plane fields is further
conducted (Sect. 3.3).

3.1 Finite Element solver and numerical simulation details

Finite Element (FE) simulations are performed with the commercial software Abaqus 2023, where the NH and
SVK constitutive models (Sect. 2.2) are both available. A comparison in the mechanical response between these
two material models (reported for completeness in Appendix B) shows qualitative similarities, according to [65] for
a different setup. Therefore, for conciseness, the results are presented with reference only to the NH model (14).
The selected parameters for the NH membrane are Young’s modulus E = 200 MPa, Poisson’s ratio ν = 0.33, and
a width-to-thickness ratio α = 1500, unless stated otherwise. Analyses are mainly performed with varying two
geometric parameters defining the undeformed planar parallelogram shape, the initial inclination angle θ0 ∈ [0, 6◦]
and the aspect ratio β ∈ [2, 5]. Due to the tangential roller constraints as edge boundary conditions (instead of the

usually investigated clamps) along ∂B[l]
x and ∂B[r]

x , the limit case of undeformed rectangular membrane (θ0 = 0)
homogeneously deforms into another rectangle with increasing ϵ, where wrinkling never occurs because a uniform
tension parallel to the x1 axis is present and the compressive state is absent. Differently, by considering a non-null
initial inclination angle θ0 ̸= 0, the membrane domain is a parallelogram where an inhomogeneous stress field is
realized, introducing some compressive principal component over the domain and possibly leading to wrinkling
instability. This is indeed what can be observed, as shown in the following even for quasi-rectangular geometries,
namely for small inclination angle values, |θ0| ≪ θ20.

An essential aspect of the numerical implementation regards the FE discretization and mesh convergence. The
simulations employ four-node quadrilateral shell elements (S4R) with reduced integration, which are particularly
well-suited for thin-shell problems because they accommodate finite membrane strains and large rotations while
mitigating common numerical artifacts. To ensure accurate resolution of wrinkling wavelengths and amplitudes,
a progressive mesh refinement was conducted. Beyond a certain refinement level, the maximum out-of-plane
displacement and stress distributions converged, exhibiting negligible variation with further refinement. Conse-
quently, the final mesh was deemed sufficiently accurate to capture the critical features of the wrinkling response
under the applied loads and boundary conditions.

Different numerical solvers are available for analyzing the stability phenomena under investigation. In most
cases, the Riks (also known as arc-length) method is adopted to trace the equilibrium path after bifurcation.
In addition to manage possible snap-through and snap-back behaviours (which are however not displayed in the
considered problem), the Riks method effectively maintains a robust convergence even amid severe nonlinearities
that occur once wrinkling commences. Additionally, dynamic implicit simulations and static analyses with
the Stabilize option are used to validate the Riks method results. These methods yield consistent out-of-
plane displacement profiles and stress distributions, differing primarily in the computational cost. It is observed
that static analysis with the Stabilize option showed better performance and numerical stability; therefore, it
was selected for all the present analyses. While the dynamic implicit and Riks methods offer no distinctive
advantages over the Stabilize approach in this context, the latter proves to be more computationally efficient
and numerically stable.

The numerical investigation under all of these approaches requires the introduction of an out-of-plane imper-
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fection in the membrane to trigger the wrinkling instability; without it, the simulation may fail to capture the
bifurcation from the trivial (flat state) path. Indeed, numerical round-off errors are typically insufficient to break
the inherent problem symmetry and trigger wrinkling in planar membrane under in-plane loading [65]. To this
purpose, the out-of-plane imperfection is considered as an initial non-planar shape, w∗(x1, x2), defined as

w∗(x1, x2) = t

2∑
i=1

si ϕi(x1, x2), (33)

where the (normalized) shape functions ϕi(x1, x2) (i = 1, 2) can be introduced by following two different ap-
proaches, either as random compatible generation or as the first two critical modes of buckling, ϕi(x1, x2) =
ϕcr,i(x1, x2). Through each of the two approaches a different non-symmetric initial non-planar state is real-
ized, however, both leading to the same critical conditions and post-critical response. When the shape functions
ϕi(x1, x2) are defined as the critical modes, these can be found through a classical Buckling analysis (under ten-
sion) applied to parallelogram membrane under the boundary conditions under considerations.2 The coefficients
si (i = 1, 2) define the amplitude applied to respective shape function ϕi(x1, x2), where the resulting imperfection
amplitude is constrained to provide |w∗(x1, x2)/t| < 0.02 for θ0 ∈ [2, 6]◦ and |w∗(x1, x2)/t| < 0.1 for θ0 ∈ [0, 2]◦

∀x ∈ Bx. Maintaining the out-of-plane imperfection at sufficiently small levels is crucial to prevent them from
dominating the physical response, while still allowing out-of-plane wrinkling to occur under tensile stress.

3.2 Bifurcations and the four different types of wrinkling pattern evolution

To start our analysis, the elongation test is performed on five compressible Neo-Hookean parallelogram membranes
with aspect ratio β = 3 (and the other parameters as defined in Sect. 3.1) and differing only in the undeformed
inclination angle θ0 = {1, 2, 2.9, 3, 4}◦. The corresponding results are first reported in Fig. 5 as the maximum
absolute value of the out-of-plane displacement over the membrane domain wmax,

wmax = max
x∈Bx

|w(x1, x2)| , (34)

normalized through division of the membrane thickness t, at increasing elongation strain ϵ. Although the initial
inclination angle θ0 spans a narrow range of small values, the response exhibits significant variation across the
considered cases, with outcomes featuring none, one, or three bifurcations in association with a corresponding
number of critical values ϵcr of the elongation strain. More specifically:

θ0 = 1◦: No bifurcation is displayed. The membrane always remains under a planar state at increasing
elongation strain ϵ;

θ0 = 2◦: A single bifurcation is displayed only at large strains at the critical elongation strain ϵcr ≃ 27%.
The maximum wrinkling amplitude monotonically increases under increasing elongation strain
ϵ > ϵcr;

θ0 = 2.9◦: Three bifurcations are detected at the critical elongation strains ϵcr ≃ {1.55, 9.5, 13}%. After the
first bifurcation at small strain (ϵIcr ≃ 1.55%), the wrinkling amplitude initially increases, but then
decreases, ultimately vanishing at the second bifurcation (ϵIIcr ≃ 9.5%), corresponding to the self-
restabilization of the planar state. After the second bifurcation the planar state is maintained until
the third bifurcation is met at large strains (ϵIIIcr ≃ 13%), which leads to the monotonic increase of
the wrinkling amplitude under increasing elongation strain ϵ > ϵIIIcr ;

θ0 = 3◦, 4◦: A single bifurcation is displayed at small strains for a respective critical elongation strain ϵcr ≃
1.25% and 0.8%. The plane state does not recover the stability although the maximum wrinkling
amplitude does not show a monotonically increasing response for any elongation strain ϵ after the
(unique) bifurcation, but only for ϵ ≳ 12.5% and 11%, respectively.

2It is worth mentioning that, similar to other planar symmetric geometries, the critical modes of parallelogram membranes exhibit
either rotational symmetry or skew-symmetry of order 2, with only a minimal difference in the corresponding critical values.
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Figure 5: Maximum value of the out-of-plane displacement wmax from FE simulations, normalized through division
by the membrane thickness t, as a function of the elongation strain ϵ. Response is reported for five NH membranes
with the same width-to-thickness ratio α = 1500, (in-plane) aspect ratio β = 3, and Poisson’s ratio ν = 0.33, and
differing only in the initial inclination angle θ0 = {1, 2, 2.9, 3, 4}◦.

To better understand the differences in the response of the five described cases, the maps of the out-of-
plane displacement w are shown in Fig. 1 on the corresponding deformed membrane at four different levels
of elongation strain ϵ = {1.5, 7.8, 14, 30}%. This representation offers further insight into the evolution of the
wrinkling pattern, which, throughout the entire deformation process, exhibits a long wavelength parallel to the x1-
axis. More specifically, it reveals that, in addition to the common smooth variation in the wrinkling wavelengths,
the considered boundary-value problem allows for the possibility of the wrinkling to be displayed at different
locations within the membrane domain. Indeed, for the same initial geometry, the wrinkling may appear over the
central region or close to the two obtuse-angled corners, depending on the imposed strain level. The wrinkling
evolution between these two locations may occur with (θ0 = 2.9◦) or without (θ0 = 3◦ and 4◦) an intermediate
restabilization of the flat configuration. Therefore, the central wrinkling totally disappears before the corner ones
arise in the former case (θ0 = 2.9◦), while the central wrinkling splits and migrates towards two wrinkling islands
close to the two obtuse-angled corners in the latter case (θ0 = 3◦ and 4◦). Interestingly, a small variation in the
initial inclination angle θ0, from 2.9◦ to 3◦, leads to a dramatic change in the wrinkling evolution, Figs. 1 and 5.

The critical values ϵcr of the elongation strain with varying the inclination angle θ0 are reported in Fig. 6 for
different membrane aspect ratio β = {2, 3, 4, 5}. This result, together with the corresponding wrinkling pattern
evolutions (not reported for conciseness), shows that, within the considered ranges of membrane aspect ratio β and
initial angle θ0, the four distinct types of wrinkling pattern evolution are in general possible. These are identified
as O, A1, B3, and B1, whose description is summarized in Tab. 1.

The pairs of membrane parameters β and θ0 associated to each one of the four types of wrinkling pattern
evolution are shown in Fig. 7 through regions of different colors (O as white, A1 as orange, B3 as red, and B1 as
blue). For completeness, it is worth to mention that a fifth behaviour has also been observed in the simulation
of parallelogram-shaped membrane under the elongation process. This fifth behaviour is associated to a first
bifurcation displayed through edge wrinkling parallel to the x2-axis close to the two acute-angled corners has been
also found. This response falls outside the β-θ0 domain reported in Fig. 7 and is briefly addressed in Sect. 3.4,
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Figure 6: Critical elongation strains ϵcr evaluated from FE simulations as functions of the magnitude of the initial
inclination angle |θ0| and different values of aspect ratio β = {2, 3, 4, 5} of the parallelogram-shaped membrane.
The colored regions represent condition for which a non-planar configuration is displayed. None, one, or three
critical values ϵcr for the elongation strain can be found for given pairs of |θ0| and β.

Table 1: Number of bifurcations and the corresponding wrinkling pattern evolution under a monotonic elongation
test for the subsets O, A1, B3, and B1.

Number of bifurcations Pattern evolution of wrinkle parallel to the x1-axis

O 0 flat configuration only

A1 1 flat → obtuse-angled corners wrinkling

B3 3 flat → central wrinkling → flat → obtuse-angled corners wrinkling

B1 1 flat → central wrinkling → obtuse-angled corners wrinkling

while its thorough analysis is left to future research.

3.3 In-plane response

The complex interplay between elasticity and geometry defines the broad landscape in the wrinkling pattern evo-
lution. The primary factor contributing to this interplay relies on the large change in the deformed configuration,
shown to occur even at limited small strains, leading to the alignment with the x1-axis of the two inclined free
edges during the stretching process. To provide an overview of the nonlinear in-plane response, the results from
plane-stress simulations (w = 0, no out-of-plane displacement allowed) are examined in terms of the minimum
in-plane (compressive) stress component and the inclination angle to show how these change with the increase of
the elongation strain ϵ.
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Figure 7: Wrinkling pattern evolution types O, A1, B3, and B1 (as described in Tab. 1) identified as regions of
the magnitude of the initial angle |θ0| and aspect ratio β pairs evaluated from FE simulations.

3.3.1 Compressive in-plane principal Cauchy stress

The maps of the minimum (compressive) in-plane principal component σmin,c of the Cauchy stress σ reported in
Fig. 8 are associated with the planar state enforced to the membrane geometries and the corresponding elongation
levels ϵ considered in Fig. 1. The minimum in-plane principal component σmin,c is the compressive (minimum
and negative) stress with an inclination ϕ with respect to the x1-axis defined as

σmin,c = min {0, σmin} , with σmin =
σ11 + σ22

2
−

√(
σ11 − σ22

2

)2

+ σ212, ϕ =
π

2
+

1

2
arctan

(
2σ12

σ11 − σ22

)
,

(35)
where, under a planar configuration, the Cauchy stress σ is uniform across the membrane thickness t and can be
evaluated from the membrane force N (10)1 through

σ =
FNFT

t det [F]
. (36)

Besides its rotational symmetry of order 2 property, it can be observed that the map becomes increasingly in-
homogeneous with the increase of the elongation strain ϵ and for higher values of the initial angle θ0. Indeed,
among the reported cases, the case θ0 = 1◦ is visibly the one with the most limited inhomogeneity in the com-
pression state and for this reason no wrinkling is realized. Apart from the two compressive edge regions at the
two acute-angled corners, the map inhomogeneity can primarily manifest in two locations: in the central region
and in the proximity of the two obtuse-angled corners. These two regions are where wrinkles may arise and,
interestingly, the highest compressive state is around the central region (ξ1 = ξ2 = 0) at small strain level, while is
close to quadrant centers (ξ1 = −ξ2 = ±1/4) at larger strain. As observed, the transition in the wrinkling location
may occur either through the intermediate restabilization of the flat state or via the separation of the wrinkling,
followed by its migration toward two wrinkling islands at the two obtuse-angled corners. From Fig. 8, these two
different evolutions are respectively shown to be associated with a weaker and stronger compressive state in the
central region. To further appreciate this aspect, the compressive in-plane principal stress σmin,c at the center
(ξ1 = ξ2 = 0) and at the quadrant centers (ξ1 = −ξ2 = ±1/4) is reported as a function of the elongation strain
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Figure 8: Maps of the compressive (minimum negative) principal in-plane stress σmin,c (35) associated with the
five compressible Neo-Hookean membranes displayed in Fig. 1, evaluated from FE simulations under planar
configuration.

ϵ in Fig. 9 for the membranes with θ0 = {2, 2.9, 3, 4}◦. The different evolutions confirm linearity in θ0 for the
considered small values range and the nonlinear response in ϵ, which is displayed only for large strain ϵ > 10%
at the quadrant centers (ξ1 = −ξ2 = ±1/4) but also for intermediate small deformations (ϵ > 3%) at the center
(ξ1 = ξ2 = 0). The compressive stress exhibits a non-monotonic trend at both locations, although the reduction
in its magnitude occurs at ϵ ≈ 5% for the center and at ϵ ≈ 30% for the quadrant centers. Moreover, while at
small strains the compressive stress at the quadrant centers is around half of that at the center, at large strain the
compressive stress becomes very small at the center and very large at the quadrant centers. The interplay of these
nonlinear planar behaviours with the small bending stiffness of the membrane leads to the different scenarios for
the wrinkling pattern evolution.

3.3.2 Inclined edges realignment with x1-axis during the stretching process

During the elongation process, the parallelogram membrane modifies its shape towards a closer rectangular ge-

ometry, with its deformed free edges ∂B[a]
x and ∂B[b]

x reducing their inclination and becoming more aligned with
the x1-axis. To quantitatively assess this phenomenon, the current inclination angle θ is introduced as (Fig. 4)

θ(θ0, β, ϵ) = arctan

[
1

1 + ϵ

(
tan θ0 +

u2(ξ1 = 1/2, ξ2 = 0) − u2(ξ1 = −1/2, ξ2 = 0)

L

)]
∈ [0, θ0], (37)

which measures the transition between the two limit cases, the undeformed parallelogram (θ = θ0) and the limit
rectangular shape (θ = 0). The current inclination θ has been numerically evaluated from several simulations
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Figure 9: Compressive (minimum negative) principal in-plane stress σmin,c at the center (ξ1 = ξ2 = 0) and at the
quadrant centers (ξ1 = −ξ2 = ±1/4) evaluated from FE simulations (under planar configuration) as a function of
the elongation strain ϵ for Neo-Hookean membranes of Fig. 8 at different initial angle values θ0 = {2, 2.9, 3, 4}◦.

performed for six different moduli of the initial angle |θ0| = {0.1, 1, 3, 5, 10, 20}◦ and for three different aspect
ratios β = {1, 3, 10} and is reported in Fig. 10(a) with varying of the elongation strain ϵ. For completeness,
the curves of the current inclination θ with varying the strain ϵ for |θ0| = 0.1◦ and β = {1, 2, 3, 4, 5, 10} are
also reported in Fig. 10(b). From Fig. 10(a), it can be concluded that, although the evolution law for the

Figure 10: Current inclination θ (37), normalized through division by its initial value θ0, evaluated from FE
simulations (under planar configuration) as a function of the elongation strain ϵ for (a) different moduli of the initial
inclination |θ0| = {0.1, 1, 3, 5, 10, 20}◦ and aspect ratios β = {1, 3, 10} and for (b) initial inclination |θ0| = 0.1◦

and different aspect ratios β = {1, 2, 3, 4, 5, 10}.

current inclination θ is highly nonlinear, the following linear expression holds for small initial inclination angles
θ0 (especially within the considered aspect ratio range β ∈ [2, 5])

lim
θ0→0

θ(θ0, β, ϵ) = θ0R (β, ϵ) , (38)

where R(β, ϵ) ∈ [0, 1] is a dimensionless function describing the reduction of the inclination angle magnitude due
to both stretching and rigid-body motion. From Fig. 10(a), it is also noted that the function R(β, ϵ) is smooth
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and therefore can be expressed through a polynomial expression in ϵ truncated at the M -th power (M ∈ N)

R(β, ϵ) = 1 +
M∑
j=1

(−1)jrj(β) ϵj . (39)

From the theoretical point of view, the values for rj(β) can be obtained from the coefficients of the series expansion
for R(β, ϵ) through its j-th derivative as

rj(β) =
(−1)j

j!

∂jR(β, ϵ)

∂ϵj
, j ∈ N. (40)

Nevertheless, the rj(β) coefficients obtained through this approach exhibit diverging magnitudes, resulting in poor
convergence even for small ranges of elongation strain ϵ. For this reason, alternatively, the coefficients rj(β) can
be defined from curve fitting of the numerical results reported in Fig. 10 to maintain, although in an approximate
way, a good representation still with small M values. As example, the coefficients rj(β) (j = 1, 2, 3) evaluated
through curve fitting of the polynomial expression (39) for R(β, ϵ) limited to M=3 with the numerical data within
the elongation range ϵ ∈ [0, 10]% are reported in Tab. 2 for different aspect ratio values β = {2, 3, 4, 5}.

Table 2: Values of the first three coefficients rj(β) (j = 1, 2, 3) for different aspect ratio values β = {2, 3, 4, 5}
evaluated from cubic curve fitting of the numerical data in Fig. 10(b) within the elongation range ϵ ∈ [0, 10]%.

β 2 3 4 5

r1 5.938 10.49 15.86 21.34

r2 27.96 82.24 166.54 266.42

r3 74.84 301.35 713.66 1245.4

It is finally highlighted that the magnitude of the current inclination θ strongly decreases even for limited
small strain values, indeed for example at an elongation strain ϵ = 1% (10%) the current inclination θ differs from
the initial value θ0 by 5.3% (38.4%) when β = 2 and by 19.1% (69%) when β = 5.

3.4 A fifth possible response: edge wrinkling parallel to the x2-axis displayed closely to the two
acute-angled corners

It is worth to mention that in addition to the four above-described behaviours (O, A1, B3, B1), a fifth one exists.
This additional response falls outside the β-θ0 domain reported in Fig. 7 and is associated to membrane geometries
characterized by βθ0 ≳ 1/3. In this response the bifurcation from the flat state occurs through wrinkling parallel
to the x2-axis displayed closely to the two acute-angled corners. The response transition from region B1 to C
is displayed in Fig. 11, where the maps of the out-of-plane displacement w(x) and of the compressive principal
in-plane stress σmin,c(x) are reported for a membrane with an aspect ratio β = 5 at increasing initial angle
θ0 = {3, 4, 5, 7}◦ and corresponding first critical elongation strain (ϵcr = {0.418, 0.156, 0.0024, 0.018}%). While the
out-of-displacement maps show that the central wrinkling is no longer the first critical mode when θ0 = 5◦ and
7◦, the compressive principal stress maps highlight how the central region becomes relatively unloaded and how
the state changes close to the two acute-angled corners with the increase of the inclination angle θ0. An analytical
explanation to this response is provided at the end of Sect. 4.1.

4 Analytical evaluation of the critical elongation strain for central wrinkling from perturbation
approach and potential energy

With reference to a small parameter a (with |a| ≪ 1), the total potential energy V associated with a small out-
of-plane displacement a ŵ(x1, x2) perturbing a flat (w = 0) equilibrated configuration described by the in-plane
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Figure 11: Maps of the out-of-plane displacement w(x) (first line) and of the compressive principal in-plane stress
σmin,c(x) (second line) from FE simulations for a membrane with an aspect ratio β = 5 and increasing initial angle
θ0 = {3, 4, 5, 7}◦ (from left to right) at the corresponding first critical elongation strain ϵcr. The first bifurcation
occurs as central wrinkling parallel to the x1-axis for θ0 = 3◦ and 4◦, and as edge wrinkling parallel to the x2-axis
close to the two acute-angled corners for θ0 = 5◦ and 7◦.

displacement ũ(x1, x2) can be evaluated through the following second-order expansion in a

V(ũ, aŵ) ≈ V(ũ, 0) + a V ′(ũ, aŵ)
∣∣
a=0

+
a2

2
V ′′(ũ, aŵ)

∣∣
a=0

, (41)

where the prime symbol (′) stands for derivative in a. Because of equilibrium the first derivative vanishes,
V ′(ũ, aŵ)|a=0 = 0, while the second derivative V ′′(ũ, aŵ)|a=0 follows from the generic expression of the total
potential energy V (75) as (repeated indices imply summation)

V ′′(ũ, aŵ)
∣∣
a=0

=

∫
Bx

(
Nγζ(ũ)

∂ŵ

∂xγ

∂ŵ

∂xζ
+
∂Mγζ

∂κρσ

∣∣∣∣
κ=0

∂2ŵ

∂xγ∂xζ

∂2ŵ

∂xρ∂xσ

)
dx1dx2. (42)

It follows that the stability of the flat configuration for the membrane is strictly connected to the sign of
V ′′(ũ, aŵ)|a=0, namely

flat configuration (w = 0) is

{
stable if V ′′(ũ, aŵ)|a=0 > 0 ∀ ŵ,
unstable otherwise,

(43)

and therefore the critical elongation strain ϵcr is associated with the annihilation condition for the second derivative,

critical condition: V ′′(ũ, aŵ)
∣∣
a=0

= 0. (44)

With reference to the linear response in bending, holding for the SVK (19)2 and LE (21)2 models, and reparame-
terizing the integral onto the unit square domain, the second derivative V ′′ (42) can be rewritten as

V ′′(ũ, aŵ)|a=0 = β

∫
Bξ

{
N11(ũ)

(
1

β

∂ŵ

∂ξ1
− tan θ0

∂ŵ

∂ξ2

)2

+N22(ũ)

(
∂ŵ

∂ξ2

)2

+ 2N12(ũ)
∂ŵ

∂ξ2

[
1

β

∂ŵ

∂ξ1
− tan θ0

∂ŵ

∂ξ2

]
+

D

β2W 2

[(
1

β

∂2ŵ

∂ξ21
− 2 tan θ0

∂2ŵ

∂ξ1∂ξ2
+ β

(
1 + tan2 θ0

) ∂2ŵ
∂ξ22

)2

−2(1 − ν)

(
∂2ŵ

∂ξ21

∂2ŵ

∂ξ22
−
(

∂2ŵ

∂ξ1∂ξ2

)2
)]}

dξ1 dξ2.

(45)
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As the in-plane displacement ũ and the membrane force N over the hyperelastic parallelogram and the out-
of-plane displacement ŵ at wrinkling depend on the inclination angle θ0, the following second-order expansions in
θ0 can be considered

ũ(ξ) = ũ(0)(ξ)+θ0ũ
(1)(ξ)+θ20ũ

(2)(ξ), N(ξ) = N(0)+θ0N
(1)(ξ)+θ20N

(2)(ξ), ŵ(ξ) = ŵ(0)(ξ)+θ0ŵ
(1)(ξ)+θ20ŵ

(2)(ξ),
(46)

from which the second-order expansion of the second derivative V ′′(ũ, aŵ)|a=0 follows as

V ′′ = V ′′(0) + θ0V ′′(1) + θ20V ′′(2), (47)

where the explicit expressions for V ′′(j) (j = 0, 1, 2) as functions of N(k)(ξ) and ŵ(k)(ξ) (k = 0, 1, 2) are deferred
to Appendix C. To further proceed with the identification of the critical elongation strain ϵcr, an approximation
for N(ξ) has be disclosed and a class for ŵ(ξ) describing possible wrinkling patterns has to be introduced. As
only the magnitude of the inclination angle θ0, and not its sign, can affect the critical elongation strain ϵcr value,
the first-order expansion of the second variation has to vanish

V ′′(1) = 0, (48)

and the critical condition (44) reduces to
V ′′(0) + θ20V ′′(2) = 0. (49)

The evaluation of the membrane force N(ξ) and the critical condition for the potential energy second derivative
V ′′ are respectively addressed in the next two Subsections.

4.1 Approximate in-plane stress field for quasi-rectangular geometries through perturbation ap-
proach

Under the assumption of small-strain (F ≈ I, det [F] ≈ 1, E[m] ≈ ϵ[m]) and planar state (w = 0, M = 0) the
nonlinear relation (36) between membrane force N and the (planar) Cauchy stress σ reduces to σ = N/t and
therefore from the linearized constitutive response (21) the Cauchy stress σ is dependent on the membrane strain
ϵ[m] by the linear elastic relation

σ =
E

1 − ν2

[
ν tr

(
ϵ[m]

)
Is + (1 − ν) ϵ[m]

]
. (50)

The Cauchy stress σ satisfies the linearized version of the equilibrium equations (11) and of the static boundary
conditions (26) and (27)

∇s · σ = 0, forx1, x2 ∈ Bx,

 σn = 0, for x1, x2 ∈ ∂B[a]
x ∪ B[b]

x ,

σ12 = 0, for x1, x2 ∈ ∂B[l]
x ∪ B[r]

x ,
(51)

while the in-plane displacement ũ remains subject to the kinematic boundary conditions (28) and (29).
By assuming small values for θ0, the Cauchy stress σ and the membrane strain ϵ[m] over the hyperelastic

parallelogram, as well as the outward unit normals n (25), can be expanded at the second-order in the initial
inclination angle θ0 as

σ = σ(0) + θ0σ
(1) + θ20σ

(2), ϵ[m] = ϵ[m](0) + θ0ϵ
[m](1) + θ20ϵ

[m](2), n = n(0) + θ0n
(1) + θ20n

(2), (52)

where the strain-displacement (20), the stress-strain (50) and the stress-membrane force relations hold at the
different orders. The described expansion considers the parallelogram domain Bx as a perturbation of the cor-
responding rectangular domain by inclining its two sides parallel to the x1 axis by the small (initial) inclination
angle θ0. Therefore, as the domain Bx depends on θ0, it is instrumental to perform the perturbation analysis by
referring the mechanical fields to the unit square domain Bξ, where the two domains are related through each
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other via the linear transformation (30), which can be approximated at the second order in θ0 under the condition
β ≪ 1/|θ0| as

ξ =
1

W

 1

β
0

0 1

+ θ0

[
0 0

−1 0

]x. (53)

Performing the analysis by referring to the auxiliary (normalized) coordinate ξ does not only allow to define the
differential problem on a non-varying domain with respect to the perturbation parameter θ0, but also to have a
simple boundary description (namely, each boundary portion is defined only one variable coordinate, while the
other one is constant), in a similar vein of the recently introduced approach for treating tapered beams [36] and
[37].

The indefinite equilibrium equations (51)1 can be expressed at the different orders in θ0 in the unit square
domain Bξ as

σ
(0)
1j,1 + βσ

(0)
2j,2 = 0, σ

(1)
1j,1 + βσ

(1)
2j,2 = β

�
�
�>

0

σ
(0)
1j,2, σ

(2)
1j,1 + βσ

(2)
2j,2 = βσ

(1)
1j,2, j = 1, 2, (54)

and the (kinematic and static) boundary conditions (28) and (51)2,3 as

σ
(0)
j2

(
ξ1, ξ2 = ±1

2

)
= 0,

σ
(0)
12

(
ξ1 = ±1

2 , ξ2
)

= 0,

ũ
(0)
1

(
ξ1 = −1

2 , ξ2
)

= 0,

ũ
(0)
1

(
ξ1 = 1

2 , ξ2
)

= ϵL,



σ
(1)
j2

(
ξ1, ξ2 = ±1

2

)
=

���������: {Eϵ,0}

σ
(0)
1j

(
ξ1, ξ2 = ±1

2

)
,

σ
(2)
j2

(
ξ1, ξ2 = ±1

2

)
= σ

(1)
j1

(
ξ1, ξ2 = ±1

2

)
+

����������: 0
1

2
σ
(0)
j2

(
ξ1, ξ2 = ±1

2

)
,

σ
(k)
12

(
ξ1 = ±1

2 , ξ2
)

= 0,

ũ
(k)
1

(
ξ1 = ±1

2 , ξ2
)

= 0.

j, k = 1, 2. (55)

While solving the differential problem (54) complemented by the boundary conditions (55) is straightforward
at the 0th order, as the solution is given by the uniform tension along ξ1 (corresponding to a rectangular domain
under uniform stretching with lateral contraction allowed), achieving the solution at the 1st and 2nd order becomes

awkward. Indeed, the respective boundary conditions enforce a discontinuity of the tangential stress σ
(k)
12 (k ≥ 1)

at each corner of the unit square (ξ1 = ±ξ2 = ±1/2), similarly to the Timoshenko paradox problem [1], and
therefore an analytical solution could be only obtained through series expression. Nevertheless, an approximate
evaluation of the higher-order solution can still be pursued by replacing the local annihilation of the tangential
stress and of normal displacement, Eqs. (55)7 and (55)8, with corresponding global conditions along the interested
edges ∫ 1/2

−1/2
σ
(k)
12 (ξ1 = ±1/2, ξ2) dξ2 =

∫ 1/2

−1/2
ũ
(k)
1 (ξ1 = ±1/2, ξ2) dξ2 = 0, k = 1, 2, (56)

providing a null value for either the resultant shear force and the average normal displacement on the two parallelo-

gram edges parallel to B[l]
ξ and B[r]

ξ . Under this assumption, the second-order expansion (with rotational symmetry
of order 2) for the stress field is found to be provided by the following closed-form over the parallelogram domain
Bx through the expanded linear transformation (53), leading to (see Appendix D for details)


σ11(x)

σ12(x)

σ22(x)

 = E ϵ




1

0

0

+ θ0


−12x1x2

W 2

−1

2
+

6x22
W 2

0

+ θ20


1 +

β2 − 3ν

2
+ 12

x21 − 2x22
W 2

− C

−24x1x2
W 2

−2 +
12x22
W 2



 , x ∈ Bx,

(57)
where C is a constant completing the description of the first-order in-plane displacement field ũ(1) and remains
arbitrary in the present analysis as it is based on the integral boundary conditions (56).
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The minimum principal stress component σmin and its inclination ϕ with respect to the x1-axis can be evaluated
through expression (35) from the stress field σ(x) (57), which, as β ≪ 1/|θ0|, result

σmin = −9

4

(
1 − 4x22

W 2

)2

θ20Eϵ < 0 (if ϵ > 0), ϕ =
π

2
− θ0

(
1

2
− 6x22
W 2

)
− θ20

(
5 − 12x22

W 2

)
6x1x2
W 2

. (58)

Eq. (58) discloses a second-order compressive stress in the initial inclination angle θ0 within a parallelogram under
elongation (ϵ > 0), with maximum magnitude for x2 ≈ 0 and acting approximately parallel to the x2-axis.

With regards to the C parameter, which would remain arbitrary from the present analytical method and
defines only a second-order term in the stress component σ11, a comparison of the numerical value of σ11 at
x1 = x2 = 0 from FE simulations with the corresponding value from the analytical expression (57)1 for different
β ∈ [1, 10] and θ0 ∈ {0.2, 10}◦ (and disregarding the possible effect of the Poisson’s ratio ν) provides the following
expression

C = −3

4

(
1 − 2β2

)
. (59)

For this value of C, the displacement component u2 that can be obtained from integration of the stress components
(57) leads to the evaluation of the current inclination θ through expression (37) as

θ ≈ θ0

[
1 − ϵ

(
23

12
+ β2

)]
, (60)

which is in excellent agreement with the linear trend of the numerical curves reported in Fig. 10 associated to
small values of the elongation strain ϵ. It is also noted that the obtained analytical expression (60) for the current
inclination θ implies the normalized derivative 1/θ0 (dθ/dϵ)|ϵ=0 = −

(
23/12 + β2

)
, confirming that the current

inclination angle θ dramatically decrease for β ≳ 2.
As the closed-form expression (57) is obtained by disregarding the boundary layer effects associated with the

edges ∂B[l]
x and ∂B[r]

x , the corresponding prediction is expected to be mostly reliable far from such boundaries.
As a comparison, the stresses σ11, σ12, σ22, and σmin (normalized through division by Eϵ) are reported with
varying ξ2 ∈ [−1/2, 1/2] for constant values of ξ1 = −{3/8, 1/4, 1/8, 0} as provided by Eqs. (57) and (58) and
by the numerical simulations in Fig. 12. The results are shown for a parallelogram with aspect ratio β = 3
and an initial inclination angle θ0 = 2.5◦ at two different elongation strains, ϵ = 1% (left) and 5% (right). The
analytical representation of the stress components is fully confirmed by the FE results at 1% except for σ22 and

σmin evaluated at ξ1 = −3/8, as this is closest to the boundary ∂B[l]
x (ξ1 = −1/2). Differently, although still

within the small strain regime, at 5% the analytical predictions loses fidelity for σ12, σ22, and σmin even for
central coordinates (ξ1 = −1/4,−1/8 and 0). This loss of reliability for the analytical solution is associated to the
dramatic change in the current inclination angle θ (discussed in Sect. 3.3.2), which introduces strong nonlinearities
in the mechanical response even under limited values of the elongation strain ϵ.

A further comment is also provided with reference to membranes with large aspect ratios β. Despite the
obtained solution (57) is formally valid only for β ≪ 1/|θ0| as it is based on the transformation expansion (53),
it is interesting to observe that the stress component σ11 truncated at the first-order in θ0 evaluated at the two
acute-angled corners is

σ11(ξ1 = sign[θ0]ξ2 = ±1/2) = E ϵ (1 − 3β|θ0|) , (61)

providing an hint about the possibility for a compressive stress parallel to the x1 axis when β > 1/(3|θ0|). In a
rough sense, this is in agreement with the stress maps in Fig. 11 for the membrane with β = 5 and θ0 = 5◦ and 7◦

(for which βθ0 = 0.436 and 0.611, respectively), associated with edge wrinkling parallel to the x2-axis displayed
closely to the two acute-angled corners (Sect. 3.4).

4.2 Analytical evaluation of the critical elongation strain ϵcr

As the in-plane membrane force has been determined in the previous Subsection, the critical condition (49) can be
fully elucidated by selecting a specific out-of-plane displacement ŵ. In general terms, the out-of-plane displacement
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Figure 12: Stress components σ11, σ12, σ22, σmin as functions of ξ2, normalized through division by Eϵ and
evaluated at ξ1 = −{3/8, 1/4, 1/8, 0}. Continuous and dotted curves represent results respectively evaluated from
the analytical expression (57) and the FE simulations for β = 3 and θ0 = 2.5◦. Two elongation strains are
considered, ϵ = 1% (left columnn) and 5% (right column).

ŵ can be introduced as the following linear superposition

ŵ(x) = H · h(x), (62)
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where H and h(x) are the vectors respectively collecting the amplitude Hj and the functions hj(x) (j=1, ..., N ,
being N the number of functions considered as basis for ŵ), the latter such that the kinematic boundary condition
(27)2 is satisfied and the first-order term V ′′(1) of the potential energy vanishes, (48). Under representation (68),
the second order expansion in θ0 of the second derivative V ′′, Eq. (47), is described by the following quadratic
expression in H

V ′′ =
EW

α3β3
H ·
{
K(0)

e + α2β2K(0)
g ϵ+ θ20

[
K(2)

e + α2β2K(2)
g ϵ
]}

H, (63)

where K
(j)
e and K

(j)
g are respectively the (normalized) elastic and geometric stiffness (symmetric N ×N) matrices

at the j-th order (j = 0 and 2). The critical condition (49) for the second derivative of the potential energy
(63) defines a generalized eigenproblem where H is the eigenvector and the critical elongation strain ϵcr is the
eigenvalue obtained by imposing the determinant annihilation

det
{
K(0)

e + α2β2K(0)
g ϵcr + θ20

[
K(2)

e + α2β2K(2)
g ϵcr

]}
= 0. (64)

Therefore, the critical condition (64) defines ϵcr as the root(s) of a polynomium of order N

cN ϵ
N
cr + cN−1ϵ

N−1
cr + ...+ c2ϵ

2
cr + c1ϵcr + c0 = 0, (65)

with cj (j = 0, ..., N) being coefficients depending on the elastic (K
(0)
e and K

(2)
e ) and geometric (K

(0)
g and K

(2)
g )

stiffness matrices.
In order to maintain simplicity in the treatment, the number N of functions hj(x) is considered as N = 1, in

which case the matrices reduce to a single component, K
(j)
e = K

(j)
e and K

(j)
g = K

(j)
g (j = 0, 2), and the polynomial

equation (65) reduces to a linear equation

α2β2
[
K(0)
g + θ20K

(2)
g

]
ϵcr + K(0)

e + θ20K
(2)
e = 0, (66)

for which the critical elongation strain ϵcr follows as

ϵcr = − K
(0)
e + θ20K

(2)
e

α2β2
[
K
(0)
g + θ20K

(2)
g

] . (67)

Considering that the closed-form expression (57) for the in-plane stress state is accurate only in the central region
and for small elongation strains ϵ (Fig. 12), the critical condition is therefore evaluated exclusively for the central
wrinkling patterns numerically identified in Sect. 3.2. These appear as wrinkles oriented parallel to the x1- axis
in the undeformed configuration, with an amplitude that decays away from the origin (x1 = x2 = 0) along both
the x1 and x2 axes. Therefore, the following expression for the function h1(x) is considered

h1(x) =

[
1 −

(
2x1
βW

)2
]2

cos4
(πx2
W

)
cos

(
nπ

(
1

2
+
x2
W

))
, (68)

being n a positive number (not restricted to be natural) defining the wrinkling wavelength along x2. Once the

function h1 is selected, the four elastic and geometric stiffness coefficients K
(0)
e (n), K

(0)
g (n), K

(2)
e (n), and K

(2)
g (n)

can be evaluated as functions of n (in addition to the dimensionless membrane properties α, β, ν) and the critical

elongation ϵcr,n(n) assessed from expression (67). While by definition K
(0)
e (n) > 0, from the integration over the

domain it is found that K
(2)
e (n) = 0 ∀n and the expression (67) for the critical elongation strain ϵcr reduces to

ϵcr,n = − K
(0)
e (n)

α2β2
[
K
(0)
g (n) + θ20K

(2)
g (n)

] , (69)
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which, considering that from the domain integration it is found that K
(0)
g (n) > 0 ∀n, implies that the critical

elongation strain is never positive for rectangular membranes, ϵcr,n(θ0 = 0) < 0 ∀n, and therefore confirming that
no tension instability occurs for this limit geometry. However, the question remains if a non-vanishing inclination
angle θ0 may trigger or not the central wrinkling under elongation strain, ϵcr > 0. With this regard, it can be

noted that whenever K
(2)
g (n) < 0 then a corresponding critical elongation strain exists, ϵcr,n > 0, for a sufficiently

large inclination angle θ0 (although within the small range). It follows that for a specific membrane material (ν)
and geometry (α, β and θ0), the critical elongation strain ϵcr can be evaluated through a minimization over the
positive parameter n of the positive critical elongation strains ϵcr,n > 0, namely

ϵcr(θ0, α, β, ν) = min
n∈R+

[ϵcr,n(θ0, α, β, ν, n)] , restricted to ϵcr,n(θ0, β, α, ν, n) > 0. (70)

Leaving the minimization over the whole set of positive values for n to specific membrane geometry and material,
in the case of natural values of n the following closed-form expressions for the critical elongation strain ϵcr,n can
be obtained as

ϵcr,n=1 = − 50π2

(1 − ν2)α2β2
679π4β4 + 1320π2β2 + 3528

50400π2 − θ20 (175π2 (1549β2 + 432ν + 72) + 33000π4β2 − 643272)
,

ϵcr,n=2 = − 100π2

(1 − ν2)α2β2
386π4β4 + 732π2β2 + 3087

88200π2 − θ20 (7π2 (52267β2 + 3150(6ν + 1)) + 36600π4β2 − 1627206)
,

ϵcr,n=3 = − 2450π2

(1 − ν2)α2β2
7663π4β4 + 9384π2β2 + 15624

10936800π2 − θ20 (49π2 (2064019β2 + 55800(6ν + 1)) + 11495400π4β2 − 168194184)
,

ϵcr,n=4 = − 9800π2

(1 − ν2)α2β2
4288π4β4 + 3840π2β2 + 4473

12524400π2 − θ20 (20π2 (8318078β2 + 156555(6ν + 1)) + 18816000π4β2 − 220379757)
,

ϵcr,n≥5 = − 2π2n2

5 (1 − ν2)α2β2
17640 + 120π2β2

(
7n2 + 16

)
+ π4β4

(
35n4 + 480n2 + 512

)
2016π2n2 − θ20Gn(β, ν)

,

(71)
where Gn(β, ν) is defined for n ∈ N+ and with n ≥ 5 by

Gn(β, ν) =
[
−382205952

(
2π2β2 − 21

)
+ 7π2

(
205 + 24π2

)
β2n20 − 4n18

(
π2
((

20489 + 2424π2
)
β2

−126(6ν + 1)) + 8610) + 18n16
(
35π2

(
2899β2 − 288ν − 48

)
+ 12216π4β2 + 114800

)
−4n14

(
π2
((

4966619 + 618024π2
)
β2 − 182196(6ν + 1)

)
+ 12450060

)
+n12

(
π2
((

104529355 + 14060328π2
)
β2 − 9082080(6ν + 1)

)
+ 620608800

)
−72n10

(
3π2

((
805483 + 153096π2

)
β2 − 291389(6ν + 1)

)
+ 59734745

)
−16n8

(
π2
((

37922381 + 1212312π2
)
β2 + 15191820(6ν + 1)

)
− 1045945908

)
+128n6

(
π2
(
2
(
12034225 + 860424π2

)
β2 + 3885903(6ν + 1)

)
− 288398145

)
−36864n4

(
π2
(
4
(
36065 + 2082π2

)
β2 + 12915(6ν + 1)

)
− 1398495

)
+2654208n2

(
π2
(
2
(
865 + 24π2

)
β2 + 63(6ν + 1)

)
− 17220

)]
/
[(
n2 − 1

) (
n2 − 4

) (
n2 − 9

) (
n2 − 16

)]2
.

(72)
The critical elongation strain ϵcr,n obtained from the closed-form expressions (71) is reported at varying natural

values of n as a function of the absolute value of the inclination angle |θ0| for α = 1500 and ν = 0.33 in Fig.
13 for different β = {2, 3, 4, 5}. Each curve associated to a different n is reported as dashed except for the
continuous portion representative of the minimum within the set of considered n. The natural value n providing
the minimization is highlighted below the horizontal axis label for the corresponding ranges of θ0. This information
shows how the wrinkling wavelength (which is inversely proportional to n) decreases with the decrease of the aspect
ratio β and of the initial inclination angle |θ0|.

The union of the minimum curve portions associated with natural values of n approximately represents the
envelope ϵcr that would be obtained by performing the minimization over the positive set values for n as described
by Eq. (70). The critical conditions numerically evaluated from the FE model are also included as circles in

25



Published in Journal of the Mechanics and Physics of Solids (2026) 208: 106461
doi: https://doi.org/10.1016/j.jmps.2025.106461

Figure 13: Critical elongation strain ϵcr from Eq. (69) as a function of the initial inclination angle θ0 for β =2(a),
3(b), 4(c) and 5(d). Different curves ϵcr,n (71) are reported as evaluated for different natural values of n. The
portion of the curve associated with the minimizing natural n is reported as continuous, while the remaining
non-minimizing part is dashed. The minimizing natural n is highlighted below the horizontal axis label. As a
comparison with the analytical curves, the values of the critical elongation strain ϵcr obtained from FE solver
at first bifurcation are also reported as circles, confirming the high reliability of the present analytical approach.
Blue circles identify central wrinkling pattern, while red circles identify edge wrinkling pattern described in Sect.
3.4.

this Figure. Two types of circles are reported: blue circles, associated to wrinkling parallel to the x1-axis in
the membrane center (as observed for B1 and B3), and red circles, associated to wrinkling parallel to the x2-
axis at the two acute-angled corners (as observed for C). The comparison confirms the high reliability of the
present analytical method in predicting the critical elongation strain for central wrinkling. Despite its simplicity,
the analytical estimation of ϵcr closely matches the numerical evaluation (represented by blue circles), with a
very limited relative error that increases as the critical elongation strain ϵcr grows. This is consistent with the
observation that due to nonlinearities the analytical description of the planar stress loses fidelity, especially when
the membrane geometry is close the transition between A3 and B3. Indeed, with reference to the comparison
reported in Fig. 13, a maximum relative error of ≈ 15% is attained for the case β = 2, θ0 = 2.8◦ (which is close
the transition between A3 and B3) and providing ϵcr ≈ 2.3%.

Furthermore, in addition to the validation of the critical value ϵcr, the comparison between the FE simulation
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and the analytical approach is also performed in terms of the wrinkling patterns in Fig. 2. Keeping the same
parameters of Fig. 13 (α = 1500, ν = 0.33), four different geometries are analyzed: β = 2 with θ0 = 3◦ and 5◦,
β = 3 with θ0 = 5◦, and β = 5 with θ0 = 3◦. Also with regard to the wrinkling pattern, the comparison shows an
excellent agreement between the analytical method and the FE numerical results.

A final comment is warranted for the geometries where the minimizing natural value of n is less than 4. In these
cases, although the analytically predicted value of the critical elongation ϵcr agrees well with the corresponding
numerical results, the wrinkling pattern predicted by the present analytical method does not fully match the
numerical observations. This discrepancy can be attributed to a loss of reliability in the stress fields given by (57),
since these geometries violate the underlying assumption β|θ0| ≪ 1 , and are thus close to — or even exactly —
those that lead to edge wrinkling parallel to the x2-axis at the two acute-angled corners, as discussed in Sect. 3.4.

5 Conclusions

The nonlinear mechanics and the wrinkling instability of initially flat, parallelogram-shaped hyperelastic mem-
branes has been thoroughly analyzed. More specifically, with reference to a stretching boundary-value problem,
usually not considered in membrane wrinkling as the lateral contraction is allowed, the role of geometry has been
mainly investigated in terms of the (in-plane) aspect ratio β and of the initial inclination angle θ0, the latter
defining the deviation from the rectangular geometry. Unlike the more symmetric setups commonly examined,
the considered problem exhibits only second-order rotational symmetry, leading to a richer and more intricate
mechanical response.

From nonlinear FE simulations recalling the geometrically extended version of the Föppl–von Kármán model,
it has been found that:

• despite the apparent simplicity of the considered boundary-value problem, the elastic response is strongly
affected by nonlinearities even at limited elongation strain levels (2% ≲ ϵ ≲ 5%), as large variations in the
current inclination angle θ take place (Fig. 10);

• while no instability under elongation is displayed in the limit case of rectangular geometry (θ0 = 0), wrinkling
instability occurs for parallelogram geometries even at small initial inclination angle (2◦ ≲ |θ0| ≲ 3◦),
depending on the aspect ratio β;

• disregarding geometries (β|θ0| ≳ 1/3) for which edge wrinkling parallel to the x2-axis may be experienced
at the two acute-angled corners (Fig. 11), three main types of evolution involving wrinkling parallel to
the x1-axis are possible under a monotonic elongation process. By increasing the magnitude of the initial
inclination angle |θ0|, these are correspondingly provided by (Fig. 1)

A1) wrinkling appearance only at large strains (ϵ ≥ 10%), with the wrinkles displayed near the two obtuse-
angled corners;

B3) wrinkling appearance at small strains (ϵ ∈ [1, 3]%), with wrinkle displayed in the central region. After
an initial increase, with further elongation the wrinkle amplitude decreases until vanishing, indicating
the restabilization of the flat configuration. After this circumstance, a second emergence of wrinkling
eventually occurs for an additional increase in elongation. This second wrinkle is displayed near the
two obtuse-angled corners;

B1) wrinkling appearance at very small strains (ϵ ≲ 1%) displayed in the central region that never completely
disappears but instead separates and migrates towards the two obtuse-angled corners through shape-
morphing with the stretching increase.

Focusing on a linear elastic response, the investigation is also complemented by the following analytical results,
which are relevant for limited small strains (ϵ ≲ 3%):

• the stress fields have been evaluated as second-order expansion in the initial inclination angle θ0 through
application of the perturbation approach, Eq. (57). The approach has been applied with reference to a
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unit square domain where the parallelogram membrane is projected. As the boundary conditions on the
edges parallel to the x2-axis are implemented in integral sense, the achieved stress fields are approximate. A
compressive stress emerges as a second-order effect in the initial inclination angle θ0, oriented nearly parallel
to the x1-axis and attaining its maximum value at x2 = 0, Eq. (58);

• the wrinkling condition has been effectively characterized in terms of both critical elongation strain and the
corresponding wrinkling pattern (Figs. 2 and 13). The analytical prediction has been obtained through
the application of the energy method, utilizing a single function for the out-of-plane displacement, which
depends on the positive parameter n that defines the wrinkling wavelength along the x2-axis. The wrinkling
pattern at the bifurcation has been determined by minimizing the critical deformation value with respect to
n. This approach yields a relatively simple closed-form expression (71).

In conclusion, beside introducing a new family of stretching boundary-value problems with allowed lateral con-
traction and a methodology for their resolution, the present investigation revealed the broad wrinkling landscape
displayed by membranes slightly perturbed from the rectangular geometry. The possibility of wrinkling migration
from one region to another within the membrane surface has been shown with increasing elongation strain. The
analysis has been complemented by a closed-form expression predicting the critical elongation strain for which
wrinkling in the central region occurs.

As practical outcome of the present investigation, a new design tool is provided for avoiding or tuning wrin-
kling instabilities in various technological fields, spanning from lightweight structures to flexible electronics and
biomedical devices.
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A Details of the mechanical model

A.1 Green-Lagrange strain decomposition

The (symmetric) tensors E[χ] and E[q] appearing in the decomposition (3) of the Green-Lagrange strain tensor E
have components given by

E[χ] =


κ11 κ12 −w,1κ11 + w,2κ12

2

κ12 κ22 −w,1κ12 + w,2κ22
2

−w,1κ11 + w,2κ12
2

−w,1κ12 + w,2κ22
2

0

 , E[q] =


κ211 + κ212 κ12 (κ11 + κ22) 0

κ12 (κ11 + κ22) κ212 + κ222 0

0 0 0

 ,
(73)

while the components of E[p] are given in (6) and by

E
[p]
13 =

ũ1,1w,1 + ũ1,2w,2

2
, E

[p]
23 =

ũ2,1w,1 + ũ2,2w,2

2
, E

[p]
33 =

(w,1)
2 + (w,2)

2

2
. (74)

A.2 Membrane equilibrium equations from variational approach

Under kinematic and stress-free boundary conditions, the total potential energy V for the membrane is coincident
with the stored elastic energy and therefore, due to the extended Föppl-von Kármán approximation (5), is given
by

V =

∫
Bx

[
Ψ[m]

(
E[m]

)
+ Ψ[b]

(
E[m], κ

)]
dA. (75)

The governing equations for the membrane can be obtained through the annihilation of the first variation δV of
the total potential energy V (75) that, by considering the constitutive hyperelastic response (9), follows as

δV =

∫
Bx

(
N · δE[m] + M · δκ

)
dA, (76)

where δE[m] and δκ are compatible variations of the corresponding membrane Green-Lagrange strain E[m] and
curvature κ tensors. The first variation δV (76) can be rewritten as

δV =

∫
Bx

{
−M · ∇2

sδw +
N

2
·
[
∇sδũ + (∇sδũ)T + (∇sδũ)T ∇sũ + (∇sũ)T ∇sδũ + ∇sδw ⊗∇sw + ∇sw ⊗∇sδw

]}
dA

(77)
which, after integration by parts, becomes

δV =

∫
Bx

{−∇s · (∇s ·M + N∇sw)δw + [∇s · ((Is + ∇sũ)N)] · δũ} dA+

M∑
j=1

Jn ·MtKδw|Γj

+

∫
∂Bx

{
−
(
n ·Mn

)
(∇sδw) · n +

[
N∇sw + ∇s ·M + t · (∇s (Mt))

]
· nδw + [(Is + ∇sũ)Nn] · δũ

}
da.

(78)
The annihilation of the first variation δV (76) for every compatible displacement variations δũ and δw implies the
set of indefinite equilibrium equations (11) complemented by the boundary (12) and corner (13) conditions.

B Comparison of critical and post-critical responses for NH and SVK models

A comparison of membranes modeled with Neo-Hookean (NH) and Saint-Venant–Kirchhoff (SVK) hyperelasticity
is reported in Fig. 14. The maximum absolute value of the out-of-plane displacement over the membrane domain
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wmax with increasing elongation strain ϵ is reported on the left for α = 2000, β = 3, E = 200 MPa and ν = 0.4
and two different inclination angles θ0 = 2◦ and 3◦. The critical elongation strain values ϵcr as function of the
initial inclination angle θ0 are reported on the right for α = 1500, β = 3, E = 200 MPa and ν = 0.4. Both
comparisons confirm that the two hyperelastic models display the same qualitative response.

Figure 14: Qualitatively coincident response of membranes modeled as Neo-Hookean (NH) and Saint Venant–
Kirchhoff (SVK). (Left) Maximum absolute value of the out-of-plane displacement over the membrane domain
wmax with increasing elongation strain ϵ for α = 2000, β = 3, E = 200 MPa and ν = 0.4 and two different
inclination angles θ0 = 2◦ and 3◦. (Right) The critical elongation strain values ϵcr with varying the initial
inclination angle θ0 for α = 1500, β = 3, E = 200 MPa and ν = 0.4.

C Expansion terms V ′′(0), V ′′(1), and V ′′(2) of the second derivative V ′′

The terms V ′′(0), V ′′(1), and V ′′(2) defining the expansion (47) for the second derivative V ′′(ũ, aŵ)|a=0 are given by

V ′′(0) = β

∫
Bξ

N (0)
11

β2

(
∂ŵ(0)

∂ξ1

)2

+ N
(0)
22

(
∂ŵ(0)

∂ξ2

)2

+
2N

(0)
12

β

∂ŵ(0)

∂ξ1

∂ŵ(0)

∂ξ2

+
D

β2W 2

( 1

β

∂2ŵ(0)

∂ξ21
+ β

∂2ŵ(0)

∂ξ22

)2

− 2(1 − ν)

∂2ŵ(0)

∂ξ22

∂2ŵ(0)

∂ξ21
−

(
∂2ŵ(0)

∂ξ1∂ξ2

)2
 dξ1 dξ2,
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V ′′(1) = β

∫
Bξ

{
∂ŵ(0)

∂ξ2

(
N

(1)
22

∂ŵ(0)

∂ξ2
+ 2N

(0)
22

∂ŵ(1)

∂ξ2

)
+

1

β2
∂ŵ(0)

∂ξ1

[
N

(1)
11

∂ŵ(0)

∂ξ1
+ 2N

(0)
11

(
∂ŵ(1)

∂ξ1
− β

∂ŵ(0)

∂ξ2

)]

+ 2

[
1

β

(
N

(1)
12

∂ŵ(0)

∂ξ2
+N

(0)
12

∂ŵ(1)

∂ξ2

)
∂ŵ(0)

∂ξ1
+N

(0)
12

∂ŵ(0)

∂ξ2

(
1

β

∂ŵ(1)
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− ∂ŵ(0)

∂ξ2

)]

+
2D

β2W 2

[(
1

β2
∂2ŵ(0)

∂ξ21
+
∂2ŵ(0)

∂ξ22

)(
∂2ŵ(1)

∂ξ21
+ β2

∂2ŵ(1)

∂ξ22
− 2β

∂2ŵ(0)
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)
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(
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dξ1 dξ2,

(80)

30



Published in Journal of the Mechanics and Physics of Solids (2026) 208: 106461
doi: https://doi.org/10.1016/j.jmps.2025.106461

and

V ′′(2) = β

∫
Bξ
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( 1

β
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β
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β
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∂ŵ(1)

∂ξ2
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∂2ŵ(1)

∂ξ21
+ β

∂2ŵ(1)
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∂2ŵ(2)

∂ξ22

)
− 2

∂2ŵ(1)
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(81)

D Details of the derivation of the approximate in-plane stress solution, Eq (57)

When the fields are described as functions of the auxiliary normalized coordinate ξ, the stress - membrane force
and the stress-strain (50) relations are preserved at the different orders

σ(k) =
N(k)

t
=

E

1 − ν2

[
ν tr

(
ϵ[m](k)

)
Is + (1 − ν) ϵ[m](k)

]
, k = 1, 2, (82)

but the strain-displacement relation (20) are transformed at the different orders into
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11

ϵ
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12

ϵ
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22
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, k = 1, 2.

(83)
The second-order expansion for the stress field satisfying these relations, the indefinite equilibrium equations (54),
and the boundary conditions (55) (with the integral boundary conditions (56) replacing Eqs. (55)7 and (55)8) is
found to be provided by the following closed-form polynomial expressions in the auxiliary coordinates ξ1 and ξ2

σ11(ξ)

σ12(ξ)

σ22(ξ)

 = E ϵ




1

0

0

+ θ0


−12βξ1ξ2

−1

2
+ 6ξ22

0

+ θ20


1 +

β2 − 3ν

2
− 24ξ22 − C

−12βξ1ξ2

−2 + 12ξ22


 , ξ ∈ Bξ. (84)

This solution can be finally projected onto the parallelogram domain Bx through the expanded linear transforma-
tion (53), leading to Eq. (57).
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