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Abstract

An elastic rod, straight in its undeformed state, has a mass attached at one end and a variable length, due to a
constraint at the other end by a frictionless sliding sleeve. The constraint is arranged with the sliding direction parallel to
a gravity field, in a way that the rod can freely slip inside of the sleeve, when the latter is not moving. In this case, the
free fall of the mass continues until the rod is completely injected into the constraint. However, when the sliding sleeve
is subject to a harmonic transverse vibration, it is shown that the fall of the mass and the rod injection are hindered
by the presence of a configurational force developing at the sliding sleeve and acting oppositely to gravity. During the
dynamic motion, such a configurational force is varying in time because it is associated with the variable bending moment
at the sleeve entrance. It is (experimentally, analytically, and numerically) demonstrated that, in addition to the states
of complete injection or ejection of the elastic rod (for which the mass falls down or is thrown out), a stable sustained
oscillation around a finite height can be realized. This ‘suspended motion’ is the signature of a new attractor, that arises
by the constraint oscillation. This behaviour shares similarities with parametric oscillators, as for instance the Kapitza
inverted pendulum. However, differently from the classical parametric oscillators, the ‘suspended’ configuration of the
rod violates equilibrium and the stabilization occurs through a transverse mechanical input, instead of a longitudinal one.
By varying the sliding sleeve oscillation amplitude and frequency within specific sets of values, the system spontaneously
adjusts the sustained motion through a self-tuning of the rod’s external length. This self-tuning property opens the way
to the design of vibration-based devices with extended frequency range.

Keywords: Elastica, configurational mechanics, dynamic bifurcation.

1 Introduction

The Kapitza inverted pendulum is a famous example of a parametric oscillator showing that an unstable equilibrium config-
uration for a rigid and movable structure can be dynamically stabilized through a controlled time-harmonic vibration, acting
at the basis of the pendulum and aligned parallel to the gravity [9]. The aim of the present article is to disclose how a similar,
but more complex, phenomenon can be displayed by a variable length elastic structure through a controlled time-harmonic
vibration orthogonal to the gravity direction. In particular, an elastic flexible rod is arranged in a sort of inverse pendulum
configuration (Fig. 1, left), where the lower part is constrained by a (frictionless) sliding sleeve and the other end has a
lumped mass attached. In the presence of a gravitational field and in the absence of any disturbance, including any motion
of the constraint, the free fall motion would occur for the mass through the injection into the sliding sleeve of the rod,
remaining undeformed. Therefore, contrary to the Kapitza pendulum, the straight upward configuration never represents an
equilibrium configuration. Despite this difference, it is shown that a transverse time-harmonic oscillation of the sliding sleeve
may generate a stable periodic or quasi-periodic motion around a finite value of the external length of the rod. In practice,
this is displayed as a ‘mass swinging suspended in the air’, as experimentally demonstrated through the photo sequence
reported in Fig. 1 (right). Noteworthy, the imposed constraint vibration is transverse to the gravity direction, marking
another difference with respect to the Kapitza pendulum, where the vibration is instead parallel.

The sustained motion shown in Fig. 1 (right), which is theoretically, numerically, and experimentally demonstrated in
the following sections, is made possible by the elastic flexibility of the rod, so that it would be impossible to be observed in
a rigid system such as the Kapitza pendulum. More specifically, when constraining a flexurally deformed rod, the sliding
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Figure 1: (Left) Concept drawing of the experimental setup, where an elastic rod with a lumped mass attached at its top end is inserted inside
a sliding sleeve, with direction parallel to the gravity. While the mass would simply fall down when the constraint does not move, the mass may
oscillate suspended against gravity when the constraint is sinusoidally vibrating along the horizontal direction. (Right) The suspended motion is
shown through a superimposed photo sequence and the tracked trajectory of the mass centre (green line).

sleeve generates a configurational force contrasting gravity and proportional to the square of the bending moment at the
sliding sleeve entrance. This configurational force was recently shown to act on elastic rods with variable length subject to
bending [4, 8, 16, 17, 21], torsion [5], and analyzed for buckling [11, 12]. As a result, the configurational force represents
the structural counterpart of the driving force on defects, as conceptualized in Eshelbian mechanics [6]; see also a recently
provided mechanical interpretation [3].

The dynamics of the considered structure is characterized by two stable attractors inherent to the presence of the sliding
sleeve constraint and corresponding to two possible final stages for the system, respectively associated with a vanishing and
an infinite value of the external length of the rod [2]. Indeed, the rod slips inside the sleeve when the configurational force
is too low, while it is ejected when the force is too high. In addition to these two inherent limit attractors, it is found that a
third one may arise when a harmonic transverse oscillation of the sleeve is imposed. This third attractor is associated with
a finite value for the external length of the rod, so that the mass does not simply fall down, rather, it remains suspended
around a certain height. The height value depends on (i.) the amplitude and frequency of the imposed harmonic motion, (ii.)
the bending stiffness of the rod, and (iii.) the (lumped) mass value. Roughly speaking, the height value is approximately
given by the external length of the clamped rod which would be at resonance under the same frequency of the harmonic
motion imposed to the sliding sleeve.

Finally, the oscillating sliding sleeve system is shown to display self-tuning properties, consisting in the spontaneous
adjustment of the external length when the amplitude and frequency oscillation parameters are ‘relatively slowly varying’ as
long as the third attractor is stable.

Attraction to a suspended non-equilibrium configuration has never been so far observed and is proven in this article
through asymptotic solutions, numerical simulations, and the design, realization, and validation (at the Instabilities Lab of
the University of Trento) of a new experimental setup permitting control and measure of the nonlinear dynamics of an elastic
rod, subject to large rotations and, simultaneously, to configurational changes of very large amounts.

The presented results introduce a new paradigm in nonlinear structural dynamics and may find applications for positioning
tasks in soft robotics [1, 18, 19], as well as for wave mitigation devices [10, 13, 15, 20] and environmental energy harvesters [7,
14, 22], where self-tuning property can be exploited to improve efficiency and to extend the frequency range of application.

The article is organized as follows: after the experimental evidence presented in Section 2, a nonlinear elastic model
of the system is developed in Section 3, together with an asymptotic solution. Numerical results from the integration of

2



Published in Journal of the Mechanics and Physics of Solids (2023), 181: 105452.
doi: https://doi.org/10.1016/j.jmps.2023.105452

the nonlinear dynamics are provided in Section 4, showing the transition from periodic to quasi-periodic motion. Finally,
the presented results are validated in Section 5 through a comparison between theoretical predictions and experimental
measurements.

2 Experimental evidence of sustained motion and self-tuning of the oscillating rod

An experimental setup has been designed, manufactured, and tested (at the ‘Instabilities Lab’ of the University of Trento)
with the purpose of observing the dynamics of a rod inserted into a sliding sleeve, as sketched in Fig. 1 (left). A detailed
presentation of the experimental setup is deferred to Section 5.

The sliding sleeve is forced to sinusoidal transverseoscillations along the horizontal direction through the applied displace-
ment ug(t), defined by

ug(t) = ūg cos
(
2πf̄ t

)
, (1)

where ūg and f̄ are respectively the amplitude and the frequency of the sliding sleeve oscillation, while t is the physical time.
When partially inserted inside of the vibrating sliding sleeve, the rod is intuitively expected to either fall down (at small

oscillation amplitude or frequency) or to be ejected outside the sleeve (at high oscillation amplitude or frequency). These
two behaviours do in fact exist, but, interestingly, a third behaviour is found, in which the interplay of the configurational
force generated at the sliding sleeve entrance with the gravity force creates a sustained motion, as shown in Fig. 1 (right)
and more accurately in Figs. 2 and 3, where a series of superimposed photos, with mass tracking reported with a green line,
are shown at increasing frequency f̄ for different lumped mass mL and amplitude ūg values. It can be appreciated that the
sustained motion occurs for a height of the lumped mass varying with the frequency value, disclosing a self-tuning property of
the system. Videos of the complete run of the experiments shown in Figs. 2 and 3 are available as Supplementary Material.

Since the beginning of the experimental campaign it has been observed that a sustained motion is not always displayed
by the system, rather it can be achieved only within specific ranges of frequency and amplitude. With reference to the values
of the lumped mass mL = {130, 303} g, two kinds of experiments, both starting from a situation of sustained motion (held
for 1 minute to overcome transient effects), have been performed:

(i) amplitude controlled experiments - the frequency f̄ is held fixed at a specific constant value (ranging between 2.5 and
17Hz) while the amplitude ūg is decreased (with a step of 0.1mm every 10 seconds) until injection, which terminates
the experiment at a recorded final amplitude, denoted as ‘critical’, ūg, cr(f̄);

(ii) frequency controlled experiments - the amplitude ūg is held fixed at a specific constant value (ūg = {3.5, 5}mm) while
the frequency f̄ is increased or decreased (with a step of 0.05Hz every 15 seconds) until injection, which terminates the
experiment at a recorded final frequency, denoted as ‘critical’, f̄cr(ūg).

Experiments of the type (i) lead to the results (in terms of critical amplitude ūg, cr versus frequency f̄) reported in
Fig. 4, where experimental measures for the above-mentioned two different values of lumped mass correspond to different
markers (crosses for mL = 130 g, and circles for mL = 303 g). The figure shows that the sustained motion is only possible
for amplitude-frequency pairs belonging to the region above the critical curve (reported as green for mL = 130 g), while
injection occurs when the pair belongs to the region below the critical curve (reported red for mL = 130 g).

At increasing frequency, the results show an initial steep decrease of ūg, cr, until a minimum is reached and a subsequent
increase is visible, up to an isolated maximum, followed by a further mild decrease (within the measured frequency range).
It follows that the sequence of tests of type (ii) experiments in order to detect the critical frequency f̄cr may vary from
at least one to at least three, due to the presence of a non-unique f̄cr for specific ranges of ūg, as visible in the videos
available as Supplementary Material. In this case, the critical values have to be detected by monotonically decreasing and
also monotonically increasing the frequency from different initial values. Results concerning the experiments of type (ii) are
reported in Section 5, where the developed theory is tested against the experiment to further validate the critical curves
reported in Fig. 4.

3 Mechanical modeling and average external length

3.1 Nonlinear equations of motion

The oscillating sliding-sleeve structure is modelled as an inextensible rod of length L, straight in its undeformed configuration,
with flexural stiffness B, and partially inserted into a sliding sleeve, Fig. 5. By introducing the curvilinear coordinate
s ∈ [0, L], corresponding to the arc-length of the rod’s centre line, the portion of rod constrained by the sliding sleeve is
defined by the set s ∈ [0, L− ℓ(t)], while the portion external to the sliding sleeve, which is the only part that can be bent,
by s ∈ [L− ℓ(t), L], being ℓ(t) the length of the rod external to the constraint. Note that the length L of the rod is assumed
to be finite, while the case of infinite length would deserve a different treatment. A mass m is modelled as attached at the
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Figure 2: A transverse vibration ug(t) = ūg cos
(
2πf̄ t

)
generates a suspended (against gravity) dynamic motion for a lumped mass mL = 130 g

(tracked with green line) attached at the end of an elastic rod. Photos taken at different instants of time are superimposed for specific values of
frequency f̄ , showing experimental results for two different oscillation amplitudes, ūg = 3.5 mm (top) and 5 mm (bottom). The green part of the
f̄ axis is associated with sustained oscillation, while the red one with final injection.

tip of the rod (s = L) and the sleeve is oriented in a vertical direction against gravity, defined by the acceleration g. The
attached mass value m of the theoretical model is considered to be possibly different from the ‘real’ lumped mass value mL

in order to account for inertial effects of the rod (having a linear mass density γ), so that m = mL + ∆m, with ∆m ≥ 0.
It is instrumental to consider two parallel Cartesian reference systems, the absolute system X − Y , with origin fixed at the
mean position of the sliding sleeve entrance, and the relative system x− y, with origin attached at the moving sliding sleeve
entrance and moving with it, which is forced to harmonically oscillate through the imposed displacement ug(t) (parallel to
X), so that the absolute and the relative positions are related as

X(s, t) = x(s, t) + ug(t), Y (s, t) = y(s, t). (2)

Because of the rod inextensibility, in addition to the configurational parameter ℓ(t), the deformed configuration is described
through the rotation field θ(s, t) measuring the counter-clockwise rotation of the rod’s tangent with respect to the undeformed
state. While the rotation is constrained to remain null within the portion of the rod inside the sliding sleeve, θ(s, t) = 0
for s ∈ [0, L − ℓ(t)], the rotation has to be evaluated outside the constraint. Neglecting the distributed inertia effects, the
governing equation for θ(s, t) is provided by the elastica

B θ′′(s, t) +Nx(t) cos θ(s, t)−Ny(t) sin θ(s, t) = 0, s ∈ [L− ℓ(t), L], (3)

where the prime denotes differentiation with respect to s, Nx(t) and Ny(t) are the components along x and y axes of
the internal action resultant R(t), which is inclined at (the counter-clockwise) angle β(t) with respect to the undeformed
configuration,

Nx(t) = R(t) sinβ(t), Ny(t) = −R(t) cosβ(t). (4)
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Figure 3: As for Fig. 2, except for a lumped mass mL = 303 g.

The differential equation (3) is complemented by the boundary condition of null moment at the coordinate s = L (neglecting
the rotational inertia of the mass),

θ′(L, t) = 0, (5)

and the algebraic equation provided by the tangential force balance at the sliding sleeve entrance involving the configurational
force [2]

Ny(t) = −M2(t)

2B
, (6)

where M(t) is the bending moment at the sliding sleeve entrance, M(t) = B θ′(L− ℓ(t), t), which is given by

M(t) = Nx(t) yL(t)−Ny(t)xL(t), (7)

while xL(t) and yL(t) are the relative coordinates of the attached mass,

xL(t) = x(L, t), yL(t) = y(L, t). (8)

It is highlighted that Eq. (6) is the approximated version of the expression obtained in [2], by neglecting the possible
contribution from the rotational inertia of the rod. The approximation presently introduced is motivated by the fact that
the sliding velocity ℓ̇(t) is much smaller than the longitudinal wave velocity in the rod.

The internal force components can be obtained through D’Alembert’s principle as

Nx(t) = −m [ẍL(t) + üg(t)]− c(t) [ẋL(t) + u̇g(t)] , Ny(t) = −m [ÿL(t) + g]− c(t) ẏL(t), (9)
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Figure 4: Critical amplitude ūg, cr as a function of the frequency f̄ (red curves). The critical curves are drawn through a linear interpolation of
the critical pairs measured through type (i) experiments for mL=130 g (red crosses) and for mL=303 g (red circles). The critical curve defines the
transition from a sustained motion (green region for mL=130 g) to the rod’s final injection (red region for mL=130 g).

where the overdot denotes differentiation with respect to the time t, and c(t) is a linear time-variable viscosity coefficient
defined as

c(t) = 2 ζ

√
3mB

ℓ3(t)
, (10)

introduced to model the dissipation of the rod and the air drag effects outside the sliding sleeve through the non-dimensional
parameter ζ ≥ 0.

The spatial integration of the elastica (3) provides the end’s relative coordinates xL(t) and yL(t) and the internal action
components Nx(t) and Ny(t) as

xL(t) = ℓ(t) {A1(t) sinβ(t)−A2(t) cosβ(t)} , Nx(t) =
B

ℓ2(t)
[K(k(t))−K(σ(t), k(t))]

2
sinβ(t),

yL(t) = ℓ(t) {A1(t) cosβ(t) +A2(t) sinβ(t)} , Ny(t) = − B

ℓ2(t)
[K(k(t))−K(σ(t), k(t))]

2
cosβ(t),

(11)

where K(k(t)) and K(σ(t), k(t)) are the complete and incomplete elliptic integrals of the first kind, respectively,

k(t) = sin

(
θL(t)− β(t)

2

)
, A1(t) = −1 +

2 [E(k(t))− E(σ(t), k(t))]
K(k(t))−K(σ(t), k(t))

,

σ(t) = −arcsin

[
1

k(t)
sin

β(t)

2

]
, A2(t) = − 2 k(t) cosσ(t)

K(k(t))−K(σ(t), k(t))
,

(12)

with θL(t) = θ(L, t), while E(k) and E(σ, k) are the complete and incomplete elliptic integrals of the second kind. Considering
the results from the spatial integration (11), the configurational force balance (6) can be rewritten as

cosβ(t) = 2 {[2 (E(k(t))− E(σ(t), k(t)))− (K(k(t))−K(σ(t), k(t)))] sinβ(t) cosβ(t) + k(t) cosσ(t) cos (2β(t))}2 . (13)

The dynamics of the structural system is therefore governed by a (DAE) differential-algebraic system of five equations
composed by (i.) the two algebraic kinematic equations (11)1 and (11)3, (ii.) the configurational force balance equation (13),
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Figure 5: An elastic rod, of flexural stiffness B and total length L, is partially inserted into the sliding sleeve so that the time-varying external
length is ℓ(t) < L. A mass m is attached to the upper end of the rod, while the sliding sleeve constraint horizontally oscillates in time through the
displacement ug(t).

and (iii.) the two following equations of motion
m [üg(t) + ẍL(t)] + c(t) [u̇g(t) + ẋL(t)]−

B

ℓ2(t)
[K(k(t))−K(σ(t), k(t))]

2
sinβ(t) = 0,

m [g + ÿL(t)] + c(t) ẏL(t)−
B

ℓ2(t)
[K(k(t))−K(σ(t), k(t))]

2
cosβ(t) = 0.

(14)

The dynamic response can be solved for the five unknowns in time, xL(t), yL(t), ℓ(t), θL(t) and β(t), for the respective given
initial conditions, fixed set of structural parameters m, B, L, g, ζ, and prescribed sliding sleeve motion ug(t).

3.2 Analytical periodic oscillation through asymptotic expansion

In order to obtain an analytical prediction for the dynamics of the structure subject to time-harmonic motion of the sliding
sleeve (1), the differential system (14) governing the relative coordinates xL(t) and yL(t) of the end of the rod is approximated
through its asymptotic expansion for small end rotation θL(t) under the assumption of null viscous dissipation (ζ = 0) as

mẍL(t) +
3B

ℓ3(t)
xL(t) = mω2 ūg cos(ω t),

m [g + ÿL(t)] =
M2(t)

2B
,

(15)

where ω = 2πf̄ is the angular frequency. Under small rotation θL(t) and by assuming β(t) ≈ ±π/2 (corresponding to the
condition |Ny(t)| ≪ |Nx(t)|), the following second-order expansions hold

M(t) = 2
B θL(t)

ℓ(t)
, xL(t) =

2

3
ℓ(t) θL(t), yL(t) = ℓ(t)

[
1− 4

15
θ2L(t)

]
. (16)

Introducing a reference rod’s length ℓm ∈ (0, L), defined as a mean value measured during a given interval of time (to be
specified later), a dimensionless time τm can be introduced as

τm = t

√
g

ℓm
, (17)
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together with other dimensionless quantities, namely, the dimensionless load pm, the dimensionless angular frequency Ωm,
the dimensionless oscillation amplitude Um, the dimensionless external length λ(τm), and the attached mass dimensionless
coordinates ξ(τm) and η(τm),

pm =
mg ℓ 2m

B
, Ωm = ω

√
ℓm
g
, Um =

ūg

ℓm
, λ(τm) =

ℓ(t)

ℓm
, ξ(τm) =

xL(t)

ℓm
, η(τm) =

yL(t)

ℓm
, (18)

so that the approximated equations of motion (15) can be rewritten in the following non-dimensional form
∗∗
ξ(τm) +

3

pm λ3(τm)
ξ(τm) = Ω2

m Um cos(Ωm τm),

1 +
∗∗
η(τm)− 2 θ2L(τm)

pm λ2(τm)
= 0,

(19)

where the superscript symbol ∗ stands for the derivative of the relevant quantity with respect to the dimensionless time τm.
The end’s rotation θL(τm) and dimensionless external length λ(τm) are sought as the following periodic functions in the
dimensionless time τm

θL(τm) = εθ cos(Ωmτm), λ(τm) = 1− εℓ cos(2Ωmτm). (20)

where εθ and εℓ are the small dimensionless amplitudes of the rotation and of the external length oscillations. By assuming
the periodic response (20), the dimensionless equations of motion (19) truncated at the smallest order reduce to

2
[
6 εθ − pm Ω2

m(3Um + 2 εθ)
]
cos(Ωm τm)− 3 εℓ

[
2 εθ − pm Ω2

m (3Um + 8 εθ)
]
cos(3Ωm τm) ≈ 0,

15

[
pm − ε2θ +

pm ε2ℓ (1− 8Ω2
m)

2

]
−
[
15 ε2θ + 30 pm εℓ − pm Ω2

m

(
8 ε2θ + 60 εℓ

)]
cos(2Ωm τm) ≈ 0.

(21)

The annihilation of the time-independent term in Eq. (21)2 leads to

pm =
ε2θ

1− 4 ε2ℓ Ω
2
m

, or, equivalently, εθ = ±√
pm

√
1− 4 ε2ℓ Ω

2
m, (22)

the latter showing that two twin solutions exist, one with the rotation θL(τm) in phase (εθ > 0) and another in counter-phase
(εθ < 0) with the imposed motion ug(t) of the sliding sleeve.

Assuming that εℓ Ωm ≪ 1, the last equation reduces to

pm = ε2θ, or, equivalently, εθ = ±√
pm, (23)

which in turn simplify Eqs. (21) to{
2 εθ

[
6− εθ Ω

2
m(3Um + 2 εθ)

]
cos(Ωm τm)− 3 εθ εℓ

[
2− εθ Ω

2
m (3Um + 8 εθ)

]
cos(3Ωm τm) ≈ 0,

ε2θ
[
15 + 30 εℓ − Ω2

m

(
8 ε2θ + 60 εℓ

)]
cos(2Ωm τm) ≈ 0.

(24)

The expansion (24) shows that equations of motion are satisfied at the smallest order when{
6− εθ Ω

2
m (3Um + 2 εθ) ≈ 0,

15− Ω2
m

(
8 ε2θ + 60 εℓ

)
≈ 0,

(25)

whose solution can be obtained under three specific regimes, differing in the inequality ruling the orders of εℓ and εθ, namely:

|εℓ| ≪ |εθ|2 , |εℓ| ≈ |εθ|2 , and |εℓ| ≫ |εθ|2 .

Among the above three regimes, only the solution referred to the second one is presented below, because it was found to
be the only one capable to predict the stable response obtained from the direct time integration of the differential-algebraic
system (11)1, (11)3, (13), and (14) in the next Section. However, the solutions corresponding to the two remaining regimes
are included for completeness in Appendix A.

Under the assumption |εℓ| ≈ |εθ|2, the system (25) defines the following asymptotic order for the dimensionless amplitude
Um and angular frequency Ωm

Um ≈ |εθ| , Ωm ≈ 1

|εθ|
, (26)
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implying the validity of the following solutions for pm → 0 and for finite values of pm Ω2
m,

Um =
2
∣∣3− pm Ω2

m

∣∣
3 pm Ω2

m

√
pm, εℓ =

15− 8 pm Ω2
m

60 pm Ω2
m

pm. (27)

A replacement in Eq. (27)1 of the non-dimensional quantities Um, pm, and Ωm with their dimensional counterparts (18)
leads to the following twin equations

2

(
mω2 ℓ 3m

B
− 3

)
± 3 ūg ℓm ω2

√
m

gB
= 0, for ℓm ̸= ℓc =

3

√
3B

mω2
, (28)

where ℓc represents the length of the clamped rod (with an attached mass m and bending stiffness B) at resonance with
the sliding sleeve motion frequency ω. By setting two dimensionless positive parameters σ and ρ, both unrestricted in their
magnitude, as

σ =
ūg

3
√
g

3

√
3

2

6

√
mω8

B
=

1

3
3

√
3

2
Um

6
√
pm

3
√
Ω4

m > 0, ρ = ℓm
3

√
2

3

3

√
mω2

B
=

3

√
2

3
3
√
pm Ω2

m > 0, (29)

Eqs. (28) can be rewritten as the two following cubic dimensionless equations

ρ3 − 2± 3 ρ σ = 0, for ρ ̸= 3
√
2, (30)

each one admitting a corresponding real and positive solution

ρ±(σ) =

3

√(
1 +

√
1± σ3

)2 ∓ σ

3
√
1 +

√
1± σ3

, (31)

and reported as functions of the dimensionless displacement amplitude σ at the sliding sleeve entrance in Fig. 6 (left). It is
noted that in the limit case of vanishing values of σ the two solutions ρ+ and ρ− converge to the same value,

lim
σ→0

ρ±(σ) =
3
√
2, (32)

and therefore both the two average lengths ℓ±m tend to converge to length ℓc of the clamped system at resonance,

lim
ūg√

g
6
√

mω8

B →0

ℓ±m = ℓc. (33)

The twin solutions θ±L (t) = ±|εθ| cos(ω t) and ℓ±(t) = ℓ±m [1− εℓ cos(2ω t)] are shown in Fig. 6 (right) for the parameters
m = 0.2 kg, B = 1.5 Nm2, ω = 10π rad/sec, and ūg = 0.005 m. Note that the rod’s end rotation θ+L (t) is in phase with the
sliding sleeve motion ug(t), while θ

−
L (t) is in counter-phase, and that, although the twin solutions appear to be far from each

other in Fig. 6 on the left, the difference in dimensional terms is small for the case under consideration (ℓ−m ≈ 1.056ℓ+m), as
it can be appreciated from the graph of ℓ(t) (Fig. 6, right bottom part).

It is interesting to note that the present asymptotic analysis shows that the periodic motion is a solution for the dynamic
response of the structure in the limit case of small rotations and high frequencies. Although based on these simplifying
assumptions, it provides a very good prediction for the average length ℓm of the part of the rod external to the sliding sleeve,
as shown through the comparison with the numerical simulations in Sect. 4 and with the experimental measurements in
Sect. 5. Moreover, the present solution reveals the self-tuning property of the system, disclosing how the average length ℓm
of the periodic motion changes with varying the oscillation amplitude ūg and angular frequency ω.

4 From periodic to quasi-periodic response

The asymptotic periodic solution presented in the previous section was derived with reference to the equations of motion
approximated under the assumption of small values of εθ and εℓ. As a result, the obtained analytical prediction is relevant
when |Um| ∼ 1/|Ωm| → 0, according to Eq. (26). Furthermore, the stability of such periodic response remains an open issue.
In order to provide a more complete view on the mechanical response and to assess the stability of the sustained motion, the
nonlinear equations of motion (14) are numerically integrated in time.

For the purposes of the numerical integration, the order of the differential equations (14) is reduced by producing pairs
of first-order differential equations. Then, the ordinary differential-algebraic equation system consisting of Eqs.(11), (13),
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Figure 6: (Left part) Twin solutions ρ± versus parameter σ (solid lines), Eqn. (31). In the limit of vanishing σ , the two corresponding

average lengths ℓ±m converge to the same value ℓc = 3
√

3B/(mω2) (provided by ρ = 3
√
2, dashed line), defining the length of the clamped rod at

resonance with the constraint motion frequency. (Right part) Time-series of (top) the sliding sleeve harmonic motion ug(t) = ūg cos(ω t) and the

twin periodic solutions in terms of (centre) the rotation θ±L (t) = ±|εθ| cos(ωt) and (bottom) the external length ℓ±(t) = ℓ±m[1 − εℓ cos(2ωt)] for
parameters m = 0.2 kg, B = 1.5 Nm2, ω = 10π rad/sec, and ūg = 0.005 m. The input motion ug(t) and the output motion θ(t) can be in phase
or in counter-phase, each one corresponding to a different value of average external length ℓm but to the same dimensionless amplitude εℓ.

and the reduced-order version of Eqs. (14) are discretized in time and the Crank-Nicolson method, adapted to ODEs, is
used to proceed from one timestep to the next. The final algorithm was programmed using MATLAB (source code available
as Supplementary Material). The obtained numerical predictions for the system response reveal that the mass can display
three different types of motion at varying input parameters: (i.) periodic; (ii.) quasi-periodic; and (iii.) divergent, the latter
leading either to a complete injection (ℓ(t) → 0) or ejection (ℓ(t) > L) of the rod. The periodic and quasi-periodic vibrations
represent a sustained motion around a finite value for the rod’s external length, where the interplay between the gravitational
and configurational forces prevent the fall of the mass.

By considering B = 1.4363 Nm and ūg = 5 mm, the two types of sustained motion are shown in Figs. 7 and 8 for System
A (characterized by m = 0.1 g and ζ = 0.02) and in Figs. 9 and 10 for System B (characterized by m = 0.197g and ζ = 0.005,
with the former value representative of the experimental setup corresponding to mL = 130 g, under the rod-lumped mass
approximation, meaning that m = mL + γL). More specifically, the phase portraits of ℓ(t) and θL(t) are reported in Figs. 7
and 9 together with their Poincaré sections, while the respective Fast Fourier Transforms PθL(f) and Pℓ(f) are reported in
Figs. 8 and 10. The results are reported when the transient effects due to the initial conditions on the motion are dissipated.

The Poincaré sections are shown for two shifted timings t1 (blue dots) and t2 (red dots), with t1 = k/f̄ and t2 = (k+1/2)/f̄
for the rotation θL(t) and with t1 = k/f̄ and t2 = (k + 1/4)/f̄ , for the external length ℓ(t), with k ∈ N defining the timings
within the relevant interval. Moreover, the whole set of states occupied by the system is drawn as a grey region. The Poincaré
sections appear as a single point (and the whole set of states as an ellipse) when the response is periodic (f̄ = 28.25Hz in
Fig. 7, f̄ = 2.5Hz in Fig. 9) or as a set of points resembling a closed loop when the response is quasi-periodic (f̄ = 26.95Hz
and f̄ = 28.15Hz in Fig. 7, f̄ = 3.2Hz and f̄ = 3.5Hz in Fig. 9). Therefore, it follows that the transition from periodic to
quasi-periodic dynamics is shown in Figs. 7 and 8 (Figs. 9 and 10) may occur at decreasing (or at increasing) sliding sleeve
oscillation frequency f̄ for System A (System B).

The change from periodic to quasi-periodic can be also appreciated from the Fast Fourier Transforms shown in Figs. 8
and 10 through the appearance of additional peaks in correspondence to several frequencies different from 2f̄ for Pℓ(f) and
to f̄ for PθL(f).

The conditions providing the transition between the different types of motion and when the sustained motion cannot
occur are displayed over a wider set of frequencies through the diagrams reported in Figs. 11 and 12 for Systems A and B,
respectively. In these diagrams, the numerical values of the average length ℓnumm (solid black line) and the corresponding
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Figure 7: Projections of the phase portraits and the Poincaré sections for the response of System A, calculated by direct numerical integration
of the equations of motion, for two quarter-period shifted phases of ℓ(t) (upper part) and two half-period shifted phases of θ(t) (lower part).
Two qualitatively different dynamic responses are shown: (i.) quasi-periodic motion for excitation frequency f̄ = 26.95Hz (left) and f̄ = 28.15Hz
(centre) and (ii.) periodic motion for f̄ = 28.25Hz (right), where the transition from the former to the latter occurs through a frequency decrease.
The blue dots correspond to t1 = k/f̄ and the red dots to t2 = (k + 1/2)/f̄ for the rotation θL(t) and to t2 = (k + 1/4)/f̄ for the external length
ℓ(t). The grey regions denote the extent of the phase space covered in time by the system.

maximum ℓnummax and minimum ℓnummin length values (dash-dotted black lines) are reported as functions of the frequency f̄ and
computed for each frequency value as

ℓnumm

(
f̄
)
=

f̄

k

∫ t0+k/f̄

t0

ℓ(t) dt, ℓnummax

(
f̄
)
= max

t∈[t0,t0+k/f̄ ]
{ℓ(t)} , ℓnummin

(
f̄
)
= min

t∈[t0,t0+k/f̄ ]
{ℓ(t)} , (34)

where t0 is a time instant after the transient effects are dissipated and the integer k (assumed equal to 60) is the number of
oscillation periods used to determine ℓnumm , ℓnummax , and ℓnummin . The two average lengths ℓ+m (blue) and ℓ−m (red), analytically
estimated through Eq. (31), are also included in the diagrams, confirming how the asymptotic expression ℓ−m provides an
excellent estimation for the self-tuned external length ℓ.

Interestingly, the diagram shows that the transition from periodicity (green region, marked with ‘P’) to quasi-periodicity
(light green region, marked with ‘QP’) is the result of a dynamic bifurcation of the system, where both ℓnummin and ℓnummax display
a visible discontinuity in their derivative. Such dynamic bifurcation is followed by a monotonic increase in the differences
ℓnummax−ℓnumm and ℓnumm −ℓnummin , eventually ending in the loss of quasi-periodicity due to the complete injection of the rod within
the sliding sleeve (red region, marked with ‘IN’). Under this circumstance, due to the nonlinearities inherent to the increasing

oscillation amplitude of the rod’s external length, the relation |εℓ| ≈ |εθ|2 does not hold anymore and the periodic solution
(20), obtained through an asymptotic technique, becomes no longer representative of the structural response at varying
frequency of the sliding sleeve. Moreover, it is also worth to mention that the loss of sustained motion may theoretically
occur even without passing through a quasi-periodic response, as shown at low frequencies (f̄ ≈ 1 Hz) in Fig. 12. Overall,
the diagrams show that the sustained motion occurs when f̄ > 26.45 Hz for System A and for 1.11 Hz < f̄ < 3.60 Hz and
f̄ > 26.35 Hz for System B. This result confirms that, in agreement with the experimental observations in Sect. 2 (Figs.
2–4), the present structural model does display not only a (stable) self-tuned sustained motion for high frequencies but it may
also display it for an ‘island’ of intermediate set of frequencies depending on the elastic, inertial, and dissipation parameters.
Note that, while the present model based on linear damping never displayed chaotic behaviour, the introduction (not pursued
here) of nonlinear dissipation, for instance friction, may deeply change the dynamics of the system, thus leading to chaos.
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Figure 8: As for Fig. 7, except that the spectrum of the response is analyzed, as calculated using the Fast Fourier Transform. A single peak in
the graphs occurring at rational values of f/f̄ implies a periodic response, while peaks appearing for other values of f/f̄ imply a quasi-periodic
response.

Figure 9: As for Fig. 7, but for System B and showing that the transition from quasi-periodic (f̄ = 3.5Hz, right, and f̄ = 3.2Hz, centre) to
periodic (f̄ = 2.5Hz, left) response can occur through a frequency decrease.
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Figure 10: As for Fig. 8, except that the spectrum refers to System B as considered in Fig. 9.

Figure 11: Bifurcation diagram, showing the transition from periodic (green region, marked with ‘P’) to quasi-periodic (light green region,
marked with ‘QP’) response of System A, when the excitation frequency is decreased to the value f̄ ≈ 28.20 Hz. When the frequency f̄ is further
reduced to reach the frequency f̄ ≈ 26.45 Hz, the rod suffers injection (red region, marked with ‘IN’). The blue and red lines represent the two
asymptotic evaluations for the average external lengths ℓ+m and ℓ−m , respectively, while the length ℓc of the clamped rod at resonance is reported
as a dashed purple line. The inset highlights the bifurcation and the transition points occurring at f̄ = 28.20Hz and at f̄ = 26.45Hz, respectively.
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Figure 12: As for Fig. 11, except that System B is analyzed. Two ranges of frequencies are found (highlighted in the two insets) within which
the rod is subject to sustained motion. The loss of sustained motion can occur without displaying an intermediate quasi-periodic dynamics.

5 Experimental setup and validation of the self-tuning external length value

The experimental setup developed for testing the sliding rod is shown in Fig. 13 and was designed, manufactured and tested
at the Instabilities Laboratory of the University of Trento.

The sliding sleeve is realized through two parallel arrays of rollers kept at a small fixed distance by means of two acrylic
panels. More specifically, the distance between the roller arrays is set to maintain the constrained part of the rod straight,
but still free to slide. The sliding sleeve constraint device is connected through a stinger to an electromagnetic actuator
(ElectroForce Linear motor 3300 Series II by Bose, frequency range 1-100 Hz, rated peak force SINE/RANDOM 3000N, max
rated travel 25 mm) and screwed on a rail system that ensures motion along the horizontal direction only. Before each test,
the sliding sleeve was oiled using Ballistol.

Carbon fiber rods are used in the experiments because of their modest material damping. The rods have a thin rectangular
cross section and are realized by cutting a carbon-fiber sheet. The rod properties are summarized in Table 1. The lumped
mass mL is made with a pair of interchangeable metallic disks mounted at the rod’s end. Two values of the lumped mass
mL were selected, 130 and 303 g. The equipment was designed to allow the excitation frequency f̄ and amplitude ūg to lie
within the ranges [0, 20]Hz and [0, 10]mm, respectively.
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Figure 13: Experimental setup designed for the oscillating sliding-sleeve system (realized at the Instabilities Lab of the University of Trento).
Upper part: general arrangement. Lower part: details of the sliding sleeve (left and centre) and of the lumped mass mL (right).

Table 1: Properties of the carbon-fiber rods used in the experiments.

Property Value

Thickness 2.04 mm

Width 25.33 mm

Length L 800 mm

Bending stiffness B 1.4363 Nm2

Mass (γ L) 67 g

The rod’s dynamics was recorded during the experiments with a Phantom High Speed V2640 camera and a Sony PXW-
FS7 camera and the related videos were post-processed using a Matlab script in order to extract the time-histories of the
relative coordinates, xL(t) and yL(t), of the mass and the external length of the rod ℓ(t).

Quantitative experimental results are reported in Fig. 14 for every pair of values ūg andmL by performing the experiments
of type (ii). In addition to the trajectories reported in Fig. 2, the experimental results are also shown in Fig. 14 in terms of

period-averaged external length ℓ
(k)
a at the k-th period of the sliding sleeve oscillation, evaluated as

ℓ(k)a =
1

tk+1 − tk

∫ tk+1

tk

ℓ(t)dt, k ∈ N, (35)

where tk (tk+1) denotes the time instant at which the period begins (terminates).

The experimentally evaluated values of ℓ
(k)
a appear as a cloud of gray dots (included as data collection and visible as a

real-time collection in the videos available as Supplementary Material), satisfactorily matching the asymptotically obtained
average external lengths, ℓ+m and ℓ−m , evaluated (for the undissipated system, ζ = 0) through Eq. (31) by considering

m = mL+γ L. The average external lengths, ℓ+m and ℓ−m , are obtained under the assumption |εℓ| ≈ |εθ|2 and are complemented
by reporting the length of the resonant clamped-free rod ℓc. It follows that a major result of the experimental campaign is the
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validation of the relation between the self-tuning external rod’s length ℓ and the prescribed frequency of the sliding sleeve, f̄ ,
Fig. 14. In a rough sense, the external length of the rod ℓ is shown to self-adjust (in an average sense) approximately within
the range [ℓ+m , ℓ−m ], so that the rod mass system evolves to reach a configuration close to its resonant state and a sustained
motion is realized. However, the sustained motion can be terminated by the occurrence of an instability in which the rod
trajectory degenerates into a final injection.

Figure 14: External length ℓ of the rod versus oscillation frequency f̄ for systems with lumped mass mL = {130, 303} g and constraint amplitude

ūg = {3.5, 5}mm. The gray points correspond to the period-averaged external length ℓ
(k)
a evaluated from the experimental measurements through

Eq. (35) (data collection available as Supplementary Material). The blue and red solid lines respectively correspond to the asymptotic predictions
ℓ+
m and ℓ−m , Eq. (31). while the dashed purple line represents the length ℓc of the clamped rod at resonance. Absence of stability for the sustained
motion can be observed for an intermediate range of frequencies where a gap is observed between the grey dots (the absence of gray dots at higher
frequencies is due to the lack of experimental data), resulting in a complete injection of the rod. When the sustained motion is stable, the system
displays self-tuning property through its spontaneous adjustment in the value of the external length ℓ as a consequence of a small variation in the
oscillation frequency f̄ .

6 Conclusions

A special kind of elastic inverted pendulum, for which static equilibrium is impossible at small deflections, has been analyzed.
Interestingly, its inverted configuration can be maintained against gravity when a transverse vibration is applied at the lower
constraint. For specific ranges of system parameters the structure is shown (analytically, numerically, and experimentally) to
self-tune its external length and display a sustained motion, obtained through an interplay between the downward (constant)
gravity force and the upward (time-varying) configurational force, the latter strictly related to the elasticity of the structure.

For the analyzed structure, the two following main features are found.

• Existence of twin asymptotic periodic motions, around two different finite values of the average rod’s length ℓ+m and ℓ−m ,
external to the sliding sleeve. These two values are shown to be close to ℓc, corresponding to the length of a clamped
rod at resonance at the input frequency. Accurate numerical simulations, accounting for a full nonlinear behaviour,
have shown that only one (ℓ−m) among the two periodic solutions may be stable.

• Stability of the sustained motion occurs only within a certain range of frequencies and amplitudes. Here, the sliding

16



Published in Journal of the Mechanics and Physics of Solids (2023), 181: 105452.
doi: https://doi.org/10.1016/j.jmps.2023.105452

rod displays self-tuning properties by spontaneously adjusting its length as a result of the change in the oscillation
amplitude and frequency.

The presented results may find application in compliant systems, including resonant metasources, where the self-tuning
capability via configurational constraints can be exploited for the development of wave mitigation devices and environmental
energy harvesters based on flexible mechanisms. Moreover, the introduced mechanical concept can drive novel control
applications where a longitudinal output can be tuned through a transverse input, with the purpose of chasing designed
trajectories or to reach targeted positions.
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A Asymptotic solution under regimes for which |εℓ| ̸≈ |εθ|2

The asymptotic solutions corresponding to the regimes |εℓ| ≪ |εθ|2 and |εℓ| ≫ |εθ|2 are reported.

A.1 Regime |εℓ| ≫ |εθ|2

In this regime the dimensionless amplitude Um and frequency Ωm have the following asymptotic order

|Um| ≫ |εθ| , |Ωm| ≈ 1√
|εℓ|

, (36)

implying the following relations at pm → 0 and for finite values of
√
pm Ω2

m

Um = ± 2
√
pmΩ2

m

, εℓ =
1

4
√
pmΩ2

m

√
pm, (37)

the latter showing that the solution defines εℓ ≈ εθ. Eq. (37) leads to the expressions for the average length ℓm and its
normalized amplitude εℓ as

ℓm = ± 2

ω2ūg

√
B

m
, εℓ = ± ūg

8

√
mg

B
, (38)

defining a gravity-insensitive average length ℓm.

A.2 Regime |εℓ| ≪ |εθ|2

While in this regime the value εℓ remains undefined, the dimensionless amplitude Um and frequency Ωm have the following
asymptotic order

|Um| ≈ |εθ| , |Ωm| ≈ 1

|εθ|
, (39)

implying that the solutions valid at pm → 0 and for finite values of pm Ω2
m define

Um = ±
2
√
pm

5
, Ωm =

1

2

√
15

2pm
, (40)

which can be rewritten in terms of the average length ℓm and the oscillation amplitude ūg as

ℓm =
1

2
3

√
15B

mω2
, ūg =

1

2
3

√
9

5ω4

6

√
B

m

√
g. (41)
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