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Abstract
A dispersion of stiff and thin (‘rigid line’) inclusions (RLIs) in a matrix material may result beneficial for
stiffening in the elastic range, but might be detrimental to strength, as material instabilities may be triggered by
inclusions when the matrix is brought to a viscoplastic-damaging state. This dual role of RLIs is investigated
by means of the embedded reinforcement model. Validated against available analytical predictions, this
numerical model is employed to assess the roles of RLIs’ orientation, interaction, volume fraction, and
distribution, considering up to 1500 inclusions. When the matrix material deforms inelastically, RLIs produce
stress concentrations that promote the nucleation of shear bands. These are characterized at collapse for
many distributions of RLIs, showing that their effects range from almost negligible to a disrupting alteration
of the dominant failure mechanism. In the latter case, it is shown that the dominant shear bands can be
fragmented by RLIs into a mosaic of tiny localization bands. These results offer new insights into energy
dissipation mechanisms of reinforced materials, as they are promoted or inhibited by the interactions of rigid
line inclusions.
Keywords: rigid line inclusions, material instability, shear band formation, embedded reinforcement model,
finite element method

1. Introduction

Biological nanocomposites with stiff minerals embedded in a relatively soft protein-based bulk mate-
rial (Landis, 1995), polymer nanocomposites with platelet-like clay particles (Kojima et al., 1993), cer-
mets (Clyne and Withers, 1995), and graphene-based composite materials (Hu et al., 2014; Stankovich et al.,
2006) are some instances of composites where the reinforcing agents are so thin and so much stiffer than
the hosting material that they can be effectively modeled as rigid-line elements. Such composites and the
roles of the highly stiff phase on their mechanical responses can, in principle, be studied with available nu-
merical models. However, these analyses would face inevitable limitations connected to the computational
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complexity stemming from the large number of arbitrarily-oriented inclusions. A computationally affordable
method is employed here to overcome this limitation and to reveal the complex mechanical interactions and the
consequent localized patterns characterizing failure of ductile materials containing rigid inclusion dispersions.

The numerical analysis of composites characterized by realistic volume fractions of inclusions with high
aspect ratio has beenmainly hindered by the requirement of conformal discretizations, an issue strictly inherent
to classical finite element methods. A further complication arises when the interface between inclusion and
matrix material is regarded as imperfect – namely, involving discontinuities in relative displacements which
may be represented by means of interface elements requiring ad-hoc meshing procedures. Broadly speaking,
aspects such as large number of inclusions and interfacial conditions can be adequately addressed with the
standard finite element method (FEM), only when the number of inclusions is moderate. In contrast, these
FEM methodologies reach their limits at high inclusion density, as the simulation cost can become very high
(an example of such a situation with perfectly bonded fibers discretized as cylinders in a three-dimensional
space can be found in Lusti and Gusev (2004)). With reference to platelet-shaped inclusions, simplifying
modeling assumptions rely on various dimensional reduction procedures, the most common being the two-
dimensional projection of the problem geometry, followed, when possible, by a further dimensional reduction
due to the high aspect ratio of the projection. The former is an accepted simplification in the numerical analysis
of polymer-clay nanocomposites, where the elongated rectangular cross section of clay platelets is discretized
by means of a conformal two-dimensional mesh (Sheng et al., 2004). The latter simplification consists in
the reduction of the narrow two-dimensional rectangular projection into a one-dimensional line inclusion, as
conveniently done by Sanborn and Prévost (2008). This approach is also pursued in rigid line inclusion (RLI)
models, which essentially are two-dimensional analytical models describing a rigid inclusion embedded in a
deformable planar matrix (Atkinson, 1973; Baranova et al., 2020; Chen, 1986, 1991; Wang and Schiavone,
2019; Wang et al., 1985). Incidentally, it is worth noting the three-dimensional analytical work by Chaudhuri
and Chiu (Chaudhuri, 2012; Chaudhuri and Chiu, 2012) dealing with planar rigid inclusions.

In a two-dimensional setting, to which the present work is limited, line inclusions can be discretized by
means of finite elements traditionally employed for the analysis of (fiber-)reinforced concrete or composites
(for example, a bar or a beam element surrounded by continuum elements) in an adequate manner. In doing
so, however, a problem arises from the conformal discretization of matrix and inclusion, an issue that has
been addressed with a number of different strategies: (i.) embedded reinforcement models (Balakrishnan
and Murray, 1986; Barzegar and Maddipudi, 1997; Cunha et al., 2012; Elwi and Hrudey, 1989; Hartl, 2002;
Zhang et al., 2020; Zienkiewicz et al., 1972), (ii.) lattice models (Bolander and Saito, 1997; Cusatis et al.,
2011; Kozicki and Tejchman, 2010), (iii.) boundary integral equation formulations and boundary element
methods (Chatterjee et al., 2008; Dong and Lee, 2005; Nishimura and Liu, 2004), (iv.) partition of unity
enrichment techniques (Pike and Oskay, 2015; Pike et al., 2015; Radtke et al., 2010), (v.) non-matching
immersed methods (Alzetta and Heltai, 2020), (vi.) interface-constraint methods (Auricchio et al., 2017), and
(vii.) other mesh-free approaches (Barbieri and Pugno, 2015; Yaghoobi and Chorzepa, 2015). A characterizing
feature of all these methods is that line inclusions can be placed in the computational domain independently
of the matrix domain discretization, thereby overriding the need for conformal discretizations. Among
these approaches, embedded reinforcement models are the closest to a classical FEM technique in terms of
implementation and offer a good compromise between accuracy and computational burden, making them ideal
tools for the characterization of dense inclusion distributions.

This article shows that the mechanics of composites with dense RLIs’ distributions can be adequately
modeled by means of the cited embedded reinforcement approach. This approach is introduced in Section 2.2
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with reference to elastic inclusions imperfectly connected to the matrix material (detailed in Section 2.3).
The study reported in Section 2.4 indicates that RLIs can be properly represented by tuning the interfacial
and inclusion stiffness parameters, showing in this way that linear elastic fields predicted by analytical
solutions (Atkinson, 1973; Chen, 1986, 1991; Wang et al., 1985) can be correctly approximated. Analogies
and distinctive features are highlighted with the corresponding fields relevant to cracks (Bigoni et al., 2008;
Dal Corso et al., 2008; Misseroni et al., 2014; Noselli et al., 2010). Sections 3 and 4 show that rigid line
inclusions can be subject to conditions of stress annihilation and neutrality (Atkinson, 1973; Dal Corso
et al., 2016a,b; Wang et al., 1985). These examples are complemented in Sections 3 and 4 by a detailed
micromechanical analysis on the role of inclusion orientation and interaction.

This work also addresses another important aspect related to RLIs. A common manifestation of failure
in a ductile material is through the nucleation and growth of shear bands, which represent localized regions
of intense shearing strain, typically occurring at severe plastic deformation. This phenomenon is an example
of material instability (a problem thoroughly investigated by H. Petryk (Bigoni and Petryk, 2002; Petryk,
1989, 1991, 1992, 1997, 2000, 2020; Petryk and Stupkiewicz, 2012), to whom this article is dedicated)
and may be theoretically explained in terms of the loss of ellipticity of the incremental constitutive tensor
which, in a continuous deformation path, is detected when the acoustic tensor (corresponding to the loading
branch of the constitutive operator) loses positive definiteness (Bigoni, 2012). Both experimental evidence
(Misra and Mandal, 2007; Özturk et al., 1991) and theoretical modelling (Argani et al., 2013; Bigoni et al.,
2008) demonstrate that, compared to the situation of a uniform material, inhomogeneities in the form of
rigid inclusions induce in the surrounding material a severe stress concentration, which strongly promotes the
nucleation and growth of shear bands and changes the failure mechanisms. Therefore, if on the one hand
inclusions stiffen the overall response of a solid, on the other they may become even detrimental to strength in
the case of brittle matrices. This effect has been experimentally evaluated for brittle matrix material in Noselli
et al. (2010), Misseroni et al. (2014), and Dal Corso et al. (2008) on resin specimens reinforced with thin metal
laminae, where the latter were shown to induce premature failure. In composites with complex distributions
of several inclusions it is expected that the presence of the latter influences not only the nucleation of shear
bands, but also their growth. In fact, the presence of a shear band strongly modifies the mechanical state, and,
in particular, the state of stress and strain tend to, say, ‘propagate’ along it, up to a long distance from the
nucleation site.

Influenced by the geometry of the inclusions’ distribution and, at the same time, by the strong directionality
and symmetry of the shear band phenomenon, networks of shear bands with higher or smaller degree of
regularity are expected to form, affecting the response of the material at failure through overall ductility and
dissipation mechanisms that are different from those measured in the matrix material. An important objective
of the present study is to investigate the formation of shear bands networks when the matrix material is ductile
and complex distributions of a large number of RLIs are present. Shear band formation and interaction
is analyzed in Section 4 in an elastic-viscoplastic-damage material matrix containing various distributions
of rigid line inclusions. As anticipated, the interest in this analysis lies in the fact that experimental and
analytical evidences indicate that the role of a RLI changes from reinforcing agent into source of material
instability (Bigoni et al., 2008; Dal Corso and Bigoni, 2009; Misra and Mandal, 2007; Özturk et al., 1991)
nucleating strain localization which in turn leads to the definition of a failure mechanism. The analyses
proposed in this work show how shear bands are generated near the tips of inclusions and ‘self-organize’ in
‘mosaic’ geometric pattern, which can promote or limit the near failure energy dissipation.
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Figure 1: Two-dimensional schematic of a solid containing rigid line inclusions.

2. Method of analysis

The main assumptions, the numerical and constitutive models employed in this study are summarized.
In particular, the dimensionally-reduced model representing the rigid line inclusions is validated against
representative analytical results.

2.1. Domain and inclusion approximations
Consider a solid with uniform properties across its thickness h, embedding M thin, elongated, and rigid

inclusions, all with a 2a[k]×d[k]×h parallelepiped shape (the index k = 1, ..., M selects the specific inclusion).
All inclusions’ edges of length h are aligned parallel to the out-of-plane direction z. The solid thickness h
may be small or large, so that a plane stress or plane strain condition prevails in the x − y plane, respectively.
The planar section of the solid is depicted in Fig. 1. In order to be representative of a RLI, the thickness d[k] is
much smaller than the length 2a[k]; in this way the inclusion retains a volume (2a[k]d[k]h) and the RLI volume
fraction can be defined. The 2a[k] × d[k] rectangular cross section of an inclusion in the x − y plane is shown
in the inset of Fig. 1, inclined at an angle θ[k] with respect to the x-axis and centered at x[k] and y[k]. In this
plane, the k-th inclusion is therefore approximated by a segment occupying the one-dimensional domain Ω[k]

Ω[k] =
{
x, y

���x = x[k] + r cos θ[k], y = y[k] + r sin θ[k], r ∈
[
−a[k], a[k]

] }
, (1)

where r is the inclusion local coordinate with origin at the inclusion midpoint.
Each inclusion interacts with the surrounding bulk material through its major interfacial surface, composed

by the two largest lateral surfaces, each with contact area 2a[k] h. The minor lateral surface, with total area
2 d[k] h, is neglected as it yields a negligible contribution. For simplicity, a unit out-of-plane thickness (h = 1)
will be henceforth assumed.

2.2. Embedded reinforcement model with slip
The embedded reinforcement model employed in this study is based on the formulation proposed by

Goudarzi and Simone (2019). In embedded models, the inclusion is represented by means of an independent
discretization that is superimposed to the domain discretization and equipped with a dedicated kinematic field.
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Next, the embedded reinforcement model is summarized with reference to a single (M = 1) inclusion; its
extension to multiple (M > 1) inclusions can be readily obtained following Hartl (2002).

2.2.1. Kinematic field
In the embedded reinforcement model by Goudarzi and Simone (2019, their Section 3.1.1) the inclusion is

not perfectly bonded to the surrounding bulk material. The displacement of a line inclusion consists therefore
of two components: the displacement of the surrounding material and the displacement relative to it. The
latter component is defined by the sliding displacement u[k]s , also referred to as ‘slip’ in the literature, which
defines a discontinuity in the displacement field across the interface between the k-th inclusion and the bulk
material. The displacement u in the composite material is therefore defined as

u =
{ ub in Ω,

ub + u[k]s e[k] for {x, y} ∈ Ω[k], (2)

whereub represents a continuous displacement fieldwithin the composite domain, and e[k] = {cos θ[k], sin θ[k]}
is a unit vector tangent to the k-th inclusion line. The inclusion continuous (non-slip) component ub · e[k] is
also referred to as ‘concrete’ (Balakrishnan and Murray, 1986), or ‘duct’ (Hartl, 2002) displacement in the
literature.

The relative displacement u[k]s between bulk material and the k-th inclusion calls for the definition of an
appropriate interfacial constitutive law apt to describe the perfect bond between a rigid line inclusion and the
surrounding bulk material; this aspect is discussed in Section 2.4.2.

2.2.2. Governing equations
With reference to the displacement field u, Eq. (2), and considering small deformations, the principle of

virtual work for a plane solid body Ω of unit thickness (Fig. 1) containing a single inclusion can be expressed
as ∫

Ω\Ω[1]
∇sδub : σb dΩ + d[1]

∫ a[1]

−a[1]

(
δub · e[1]

)
,r
σ[1] dr =

∫
Γt

δub · t̄ dΓt, (3a)

d[1]
∫ a[1]

−a[1]
δu[1]s,r σ

[1] dr + 2
∫ a[1]

−a[1]
δu[1]s t[1] dr = 0, (3b)

where the subscript ‘, r’ denotes the derivative with respect to r , ∇s and δ are the symmetric gradient and the
first variation operators, respectively, σb is the stress tensor in the bulk material, and the scalar σ[1] is the axial
stress along the inclusion. Moreover, t̄ is the traction vector acting along the solid boundary Γt ⊆ ∂Ω, and t[1]

is the interfacial tangential traction, acting along the inclusion-matrix interface.
Equation (3a) defines the virtual work done by the displacement field ub in the whole body, with the

exception of the inclusion-matrix interface contribution. On the left-hand side, the first term represents the
usual contribution of the bulk material, while the second accounts for the corresponding work in the one-
dimensional inclusion domain by the duct (axial) deformation, with the factor before the integral representing
the cross-sectional area d[1] h (with thickness h = 1). The term on the right-hand side of Eq. (3a) is the
work done by the tractions applied on the boundary. Equation (3b) represents the virtual work done by the
slip component of the inclusion displacement. The first term defines the work done at the boundary of the
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inclusion, with the factor before the integral representing the inclusion cross-sectional area d[1] h. The second
term accounts for the work done at the inclusion-matrix interface, defined by the two major lateral surfaces,
each with area 2a h. The work done across the two ends of an inclusion, each with surface d[1] h, is neglected
because d[1] � a[1].

2.2.3. Discretization and linearizations
The discretized version of Eq. (3) at the element level for the bulk material is obtained by expressing the

displacement ub and strain ∇sub fields as

ub = Nbb and ∇sub = Bbb, (4)

where Nb collects finite element nodal shape functions, Bb the corresponding derivatives according to the
displacement-strain relation, and vector b contains nodal displacements.

The bulk material and the line inclusion are discretized by means of two non-conforming discretizations.
For convenience, the inclusion is discretized by a sequence of 2-node inclusion segments obtained from the
intersection of inclusion and bulk material discretizations. The quantities below are expressed with reference
to an inclusion segment with endpoints i and j. The inclusion non-slip component ub and its derivative ub,r
are computed from the displacement field of the bulk material elements crossed by the inclusion as

ub · e[1] = N[1]d H[1]b and ub,r · e[1] = B[1]d H[1]b, (5)

where the expressions for the matrices N[1]d , B[1]d , and H[1] are reported by Goudarzi and Simone (2019). The
slip component u[1]s and its derivative u[1]s,r can be approximated as

u[1]s = N[1]s s[1] and u[1]s,r = B[1]s s[1], (6)

where s[1] =
[
si, s j

]T is the vector of endpoint slips, while

N[1]s =
[
Ni Nj

]
and B[1]s =

[
Ni,r Nj,r

]
(7)

contain inclusion shape functions and their derivatives, respectively.
The discretized displacements, Eqs. (4) to (6), are introduced in the weak form (3) and the resulting

equations can be interpreted as the equilibrium conditions

fint,b = f̄ext,b and f[1]int,s = f̄[1]ext,s (8)

representing a balance between internal and external forces, related to the contributions from the bulk material
and the inclusion, with

fint,b =

∫
Ω\Ω[1]

BT
bσb dΩ + d[1]

∫ a[1]

−a[1]
H[1]TB[1]Td σ[1] dr,

f̄ext,b =

∫
Γt

NT
b t̄ dΓt,

f[1]int,s = d[1]
∫ a[1]

−a[1]
B[1]Ts σ[1] dr + 2

∫ a[1]

−a[1]
N[1]Ts t[1] dr,

f̄[1]ext,s = 0,

(9)

6



Published in International Journal of Solids and Structures (2021) 210–211, 255-272
doi: https://doi.org/10.1016/j.ijsolstr.2020.11.006

where it is assumed, as shown in the last equation, that the inclusion is not subject to external forces.
The linearized version of the discretized weak form is obtained by expressing the constitutive relations for

bulk and inclusion in rate form, with rate quantities identified by a superimposed dot, Û(·). The stress rate for
the bulk material is therefore expressed in terms of nodal displacement velocities as

Ûσb = Db Bb Ûb, (10)

where Db relates the stress and strain rates in the bulk material. The rate Ûσ[1] of the (axial) stress along the
inclusion and the rate Ût[1] of the interfacial tangential traction are defined as

Ûσ[1] = E [1]i

(
B[1]d H[1] Ûb + B[1]s Ûs[1]

)
, Ût[1] = K [1]bt N[1]s Ûs[1], (11)

where a linear elastic behavior is assumed for the inclusion and the inclusion-matrix interface, with E [1]i

the Young’s modulus of the inclusion and K [1]bt the interfacial stiffness. Because of the nonlinear consti-
tutive relation of the bulk material, summarized in Section 2.3, the governing equations are solved using
an incremental-iterative procedured by means of the linearized relation reported below obtained following
standard procedures (Zienkiewicz and Taylor, 1989). With reference to a generic load increment, the discrete
governing system of nonlinear equations is solved using the Newton-Raphson iterative solution scheme for the
iterative displacements δb and δs[1] according to[

K j−1
bb K[1] j−1

bs

K[1] j−1
sb K[1] j−1

ss

] [
δb j

δs[1] j

]
=

[
f̄ j
ext,b

0

]
−

[
f j−1
int,b

f[1] j−1
int,s

]
, (12)

where j is the iteration number, and the sub-matrices read, dropping the superscript j for clarity:

Kbb =

∫
Ω\Ω[1]

BT
b DbBb dΩ + E [1]i d[1]

∫ a[1]

−a[1]
H[1] TB[1] T

d B[1]d H[1] dr,

K[1]bs = E [1]i d[1]
∫ a[1]

−a[1]
H[1] TB[1] T

d B[1]s dr,

K[1]sb = E [1]i d[1]
∫ a[1]

−a[1]
B[1] T

s B[1]d H[1]dr,

K[1]ss = E [1]i d[1]
∫ a[1]

−a[1]
B[1] T

s B[1]s dr + 2K [1]bt

∫ a[1]

−a[1]
N[1] T

s N[1]s dr .

(13)

The integrals over Ω \ Ω[1] in Kbb (13) and fint,b (9) are computed with reference to the domain Ω. This
computational strategy implies that the contribution along the inclusion line is counted twice because of the
second integrals inKbb and fint,b. Nevertheless, these contributions turn out to be negligible because inclusions
are assumed to be numerically equivalent to rigid as discussed in Section 2.4.2.

2.3. Constitutive models for the bulk material
For the linear elastic analyses reported in Sections 2.4 and 3, the incremental stiffness for the bulk material

corresponds to the tensor of linear isotropic elasticity (Db = Del
b ).
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In the numerical simulations presented in Section 4, bulk material degradation is described by means of the
rate-dependent isotropic elastoplastic-damage model proposed by Simone and Sluys (2004, their Section 2)
and derived from the class of models proposed by Ju (1989). The coupling of damage and plasticity is
introduced by means of the effective stress concept and the hypothesis of strain equivalence. The effective
stress concept allows a simple algorithmic treatment of the coupled elastic-viscoplastic-damage model. The
algorithmic procedure hinges on the definition of the effective stress tensor σ̃b, the algorithmic tangent moduli
D̃p, and the equivalent plastic strain κ̃, where a superscript tilde indicates a quantity defined in the effective
stress space. Accordingly, the rate-dependent effective stress tensor σ̃b is expressed as

σ̃b =
σb

1 − ω = Del
b : εel = Del

b :
(
εb − εvp

b

)
, (14)

where σb is the stress tensor, εb is the total strain, εvp
b is the viscoplastic strain, ω is a scalar damage parameter

(0 ≤ ω ≤ 1) defined as
ω = α

(
1 − e−βκ̃

)
, (15)

with α and β being dimensionless parameters governing the growth of damage and subject to the constraints
0 ≤ α ≤ 1 and β ≥ 0.

Note that the damage parameter ω, Eq. (15), will systematically be used in the following to visualize strain
localization and trace shear band patterns.

Assuming small strain viscoplasticity, the total strain rate Ûεb is additively decomposed into elastic Ûεel
b and

viscoplastic Ûεvp
b contributions:

Ûεb = Ûεel
b + Ûεvp

b . (16)

Under plastic flow ( f̃ ≥ 0, where f̃ is the yield function), the viscoplastic strain rate is expressed in the
associative form according to the model introduced by Perzyna as

Ûεvp
b =

1
τ
φ̃

(
f̃
)

f̃σ, (17)

where τ is the relaxation time and f̃σ = ∂ f̃ /∂σ̃b.
The overstress function φ̃

(
f̃
)
is expressed in the power-law form

φ̃
(
f̃
)
=

(
f̃
σ̄0

)N

, (18)

where N (N ≥ 1) is a real number and σ̄0 is the initial yield stress. The softening rule governing the yield
stress is described by means of the relation

σ̄ (κ̃) = σ̄0

(
(1 + c) e−bκ̃ − ce−2bκ̃

)
, (19)

where b and c are dimensionless model parameters.
Following standard procedures, detailed by Simone and Sluys (2004, their Section 2), the consistent tangent

operator Db for the elastic-viscoplastic-damage model can be expressed as

Db = (1 − ω) D̃p − ∂ω
∂κ̃

σ̃b ⊗ r̃, (20)
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where the consistent tangent for the viscoplastic contribution assumes the form

D̃p = R̃ − R̃ : f̃σ ⊗ f̃σ : R̃
f̃σ : R̃ : f̃σ − f̃κ κ̃λ + τ/

(
∆t φ̃ f̃

) (21)

with
R̃ =

(
I + ∆λ̃Del f̃σσ

)−1
Del, (22)

where f̃σσ = ∂ f̃σ/∂σ̃b, f̃κ = ∂ f̃ /∂κ̃, κ̃λ = ∂κ̃/∂λ̃, being λ̃ the plastic multiplier, ∆t the time increment, and I
the fourth-order symmetrization tensor, Ii j kl =

1
2
(
δikδ jl + δilδ j k

)
.

Finally, the second-order tensor r̃, introduced in Eq. (20), is defined as

r̃ = R̃ : f̃σ

f̃σ : R̃ : f̃σ − f̃κ κ̃λ + τ/
(
∆t φ̃ f̃

) . (23)

2.4. Validation of the numerical model in linear elasticity
The numerical model is validated in linear elasticity. To this end, the elastic constitutive parameters for

the inclusion are calibrated to reproduce the analytical solution of a single RLI embedded in an unbounded
linear elastic domain. The procedure is then validated against a representative case with two collinear RLIs
having the same length. Henceforth, the superscript indicating the inclusion number is omitted for clarity.

2.4.1. A summary of linear elastic analytical results
Basic concepts and analytical solutions in plane elasticity are briefly reviewed for RLIs. For convenience,

a local reference system x̂ − ŷ is introduced, centered at the midpoint of the RLI and with the x̂-axis defined
by the unit vector e aligned parallel to the inclusion as shown in Fig. 2(a).

Asymptotic stress field and stress intensity factors. Figure 2(a) shows a RLI embedded in an infinite elastic
isotropic domain. The asymptotic stress field near the tip of an inclusion is expressed as (Atkinson and Craster,
1995)

σx̂ x̂(ρ, φ) =
K (ε)I

κ
√

2πρ
cos

φ

2

(
3 + κ

2
− sin

φ

2
sin

3φ
2

)
+
K (ε)II

κ
√

2πρ
sin

φ

2

(
3 − κ

2
+ cos

φ

2
cos

3φ
2

)
,

σŷ ŷ(ρ, φ) = −
K (ε)I

κ
√

2πρ
cos

φ

2

(
κ − 1

2
− sin

φ

2
sin

3φ
2

)
+
K (ε)II

κ
√

2πρ
sin

φ

2

(
1 + κ

2
− cos

φ

2
cos

3φ
2

)
,

σx̂ ŷ(ρ, φ) =
K (ε)I

κ
√

2πρ
sin

φ

2

(
1 + κ

2
+ cos

φ

2
cos

3φ
2

)
+
K (ε)II

κ
√

2πρ
cos

φ

2

(
κ − 1

2
+ sin

φ

2
sin

3φ
2

)
,

(24)

where ρ is the distance from the inclusion tip, φ is the counterclockwise polar angle measured from the
inclusion axis x̂, κ is the Kolosov constant (κ = 3− 4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress,
with ν the Poisson’s ratio), and K (ε)I and K (ε)II are, respectively, the mode I and mode II RLI stress intensity
factors (SIFs) defined as (Noselli et al., 2010)

K (ε)I = 2µ lim
ρ→0

√
2πρεx̂ x̂(ρ, φ = 0) and K (ε)II =

4κµ
κ − 1

lim
ρ→0

√
2πρεx̂ ŷ(ρ, φ = 0), (25)
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Figure 2: The two elastic boundary value problems used for the validation of the numerical model: (a) One RLI is embedded in an
infinite elastic domain, and (b) the same RLI lies within a square domain of side L. The analytical solution of the elastic boundary
value problem in panel (a) is used to validate the numerical model applied to the boundary value problem in panel (b). The unit
vector e = {cos θ, sin θ} is aligned parallel to the inclusion line.
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where µ is the elastic shear modulus, and the superscrit (ε) highlights that the stress intensity factor is based
on a strain measure, instead of a stress measure as in fracture mechanics. The asymptotic expansion (24)
displays a square-root singularity in the radial direction from the inclusion tip.

J-integral. Introduced by Cherepanov (1967) and Rice (1968) in fracture mechanics, the J-integral,

J =
∫
Γ

(
U dŷ −T · ∂u

∂ x̂
ds

)
, (26)

turns out to be path-independent also when computed for a RLI. In this expression,U is the elastic strain energy
density, T is the surface traction vector, u is the displacement vector, and Γ is any closed counterclockwise
contour enclosing the inclusion tip. With the asymptotic expansions (24), the J-integral expression reduces
to

J = −1 + κ
8κµ

[(
K (ε)I

)2
+

(
K (ε)II

)2
]
, (27)

which, unlike the J-integral for fracture problems, is always non positive (with the physical meaning that a
reduction in length of the RLI would lead to a decrease of the total potential energy). It is therefore interesting
to investigate the vanishing condition for the J-integral as it defines ‘neutral RLI orientations’ that correspond
to a homogeneous stress state, in which case the RLI leaves the stress field unperturbed. Such a condition is
defined by

neutrality condition: K (ε)I = K
(ε)
II = 0 ⇔ J = 0. (28)

A single inclusion embedded in an infinite elastic domain subject to uniform remote stress condition. Consider
a single RLI of half-length a. The inclusion is inclined at an angle θ̄ with respect to the x axis and is embedded
in an infinite elastic domain subject to a uniform remote stress field with components σ∞xx , σ∞yy and σ∞xy
(Fig. 2(a)). The stress field ahead of the RLI has been obtained by Atkinson (1973) using a complex potentials
technique and reads as, for | x̂ | > a,

σx̂ x̂(x̂, ŷ = 0) = −(κ + 3) µ ε
∞
x̂ x̂

κ

(
1 − | x̂ |√

x̂2 − a2

)
,

σŷ ŷ(x̂, ŷ = 0) = (κ − 1) µ ε
∞
x̂ x̂

κ

(
1 − | x̂ |√

x̂2 − a2

)
,

σx̂ ŷ(x̂, ŷ = 0) = σ∞x̂ ŷ,

(29)

with

ε∞x̂ x̂ =
(κ + 1)σ∞x̂ x̂ + (κ − 3)σ∞

ŷ ŷ

8µ
, σ∞x̂ x̂ = σ

∞
xx cos2 θ̄ + σ∞yy sin2 θ̄ + σ∞xy sin 2θ̄,

σ∞
ŷ ŷ
= σ∞xx sin2 θ̄ + σ∞yy cos2 θ̄ − σ∞xy sin 2θ̄, σ∞x̂ ŷ = −(σ∞xx − σ∞yy) sin θ̄ cos θ̄ + σ∞xy cos 2θ̄ .

(30)
Using the above expressions, the SIFs (25) at the RLI tips can be expressed as (Noselli et al., 2010)

K (ε)∞I = 2µε∞x̂ x̂
√
πa, K (ε)∞II = 0, (31)

where the superscript ‘∞’, added to K (ε)I and K (ε)II , highlights the reference to an unbounded elastic domain.
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Figure 3: Convergence of the mode I stress intensity factor evaluated numerically to that estimated analytically. The two values
are calculated with reference to the two boundary value problems depicted in Fig. 2 on the right (for L=10a) and on the left,
respectively. The numerical solution differs from the theoretical prediction by less than 1% when Eid/(E2D

b a) > 100 (blue line,
with Kbt a/E2D

b = 2.5 × 104) or when Kbt a/E2D
b > 250 (red line, with Eid/(E2D

b a) = 104).

Neutral inclusion orientations. It is evident that the inclusion does not perturb a mechanical field whenever
it lies along a zero-elongation line of an unperturbed field. In the case of an unbounded domain subject
to a remote uniaxial stress state, obtained by imposing σ∞yy = σ̄ as the only non-null stress component
(σ∞xx = σ

∞
xy = 0), the J-integral (27) reduces to

J = − κ(1 + κ)πaσ̄2

128µ

[
1 − 1 + 2 cos 2θ̄

κ

]2
, (32)

and therefore the inclinations (with respect to the x-axis) θ̄ = θ̄n correspond to neutrality of the RLI when the
J-integral vanishes, a condition leading to

θ̄n = ±1
2

arccos
(
κ − 1

2

)
(33)

and implying σ∞
ŷ ŷ
= −(κ + 1)/(κ − 3)σ∞x̂ x̂ and ε

∞
x̂ x̂ = 0.

2.4.2. Calibration of inclusion model parameters for the numerical approximation of a RLI
The embedded reinforcement model with interfacial slip described in Section 2.2 enables the mechanical

description of an imperfectly-bonded and axially compliant line inclusion in a two-dimensional domain. As
such, it could be used to examine the influence of axial and bond stiffnesses. In this study we are however
interested in the analysis of rigid line inclusions that are perfectly bonded to the bulk material, a situation
that can be theoretically attained when {Ei,Kbt} → ∞. From the computational point of view, by analyzing
the stiffness matrix (13), this limit situation can be reached at sufficiently large values of the dimensionless
parameters Eid/(E2D

b a) and Kbt a/E2D
b , respectively related to the axial and bond stiffness. Here and in

the following the Young’s modulus is defined with reference to generalized plane elasticity, E2D
b , which

corresponds to Eb under plane stress conditions or Eb/(1 − ν2
b) under plane strain conditions, where Eb is the

three-dimensional elastic modulus.
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The calibration of the two dimensionless parameters Eid/(E2D
b a) and Kbt a/E2D

b , needed to obtain results
pertinent to RLIs, is assessed through a comparison between K (ε)num

I , the Mode I stress intensity factor
numerically derived from the J-integral (evaluated along a circular path of radius 0.1a and centered at the
inclusion tip), and its analytical counterpart K (ε)∞I . To this purpose, a single horizontal (θ̄ = 0) RLI of
half-length a is considered, embedded in a linear elastic domain subject to a uniaxial remote stress σ∞

ŷ ŷ
= σ̄yy,

so that Eq. (31)1, referred to Fig. 2(a) with θ̄ = 0, simplifies to

K (ε)∞I =
(κ − 3)σ̄yy

√
πa

4
. (34)

The predictions obtained with Eq. (34) are compared to results from numerical simulations referred to the
boundary value problem represented in Fig. 2(b), where σ̄yy is applied as a traction on the upper boundary of
a square domain of size L = 10a. The domain is discretized with a sufficiently fine uniform mesh of bilinear
elements. Plane strain conditions with Poisson’s ratio νb = 0.2 are assumed to prevail, together with d = 0.1L
(note that this value is immaterial since it acts as an amplification factor to Ei in the discrete set of equations).
Since the inclusion is neither rigid nor perfectly bonded to the bulk material, the numerical evaluation of the
J-integral (26) does not display path-independency; hence comparison with the analytical results becomes
meaningful only in the case of large values for inclusion and interfacial stiffnesses.

Figure 3 shows the SIF ratioK (ε)num
I /K (ε)∞I as a function of either Eid/(E2D

b a) (blue line, with Kbt a/E2D
b =

104) or Kbt a/E2D
b (red line, with Eid/(E2D

b a) = 2.5 × 104). The comparison shows a relative error lower than
5% when the values of these two parameters are sufficiently large, Eid/(E2D

b a) > 10 or Kbt a/E2D
b > 25. The

error reduces to less than 1% when these values are above 100 and 250, respectively. With these parameter
values, the inclusions can be considered as rigid in numerical simulations.

As a final remark, by assuming a sufficiently large value for the dimensionless elastic bond stiffness
Kbt a/E2D

b between bulk material and inclusion, the embedded reinforcement model with imperfect interface
practically reduces to the classical embedded reinforcement model with perfect interface (Zienkiewicz et al.,
1972), whose implementation is available in standard FEM packages for the analysis of reinforced concrete
structures (for instance, DIANA, ABAQUS, ANSYS).

2.4.3. Reliability assessment of the numerical model
The numerical model is validated against analytical estimates related to a single RLI embedded in a finite

elastic domain and a pair of collinear RLIs in an infinite elastic domain. The case of multiple RLIs, discussed,
for example, in Dong and Lee (2005), is not considered in this reliability assessment exercise. For the
numerical evaluations, the inclusions are embedded in a domain of size L and the dimensionless parameters
discussed in the previous section assume the values Eid/(E2D

b a) = 104 and Kbt a/E2D
b = 2.5 × 104, while the

other parameters and boundary conditions are identical to those employed for the calibration of inclusion and
interfacial stiffnesses. Unless otherwise stated, the computational domain of the bulk material is discretized
by a sufficiently fine uniform mesh of bilinear elements.

Effects of the finiteness of the domain on the SIF. The stress intensification at the tips of a RLI of half-length
a centered in a square elastic domain of size L is evaluated by varying the ratio a/L. The numerical results
have been obtained with a structured mesh of bilinear elements, locally refined around the inclusion. Figure 4
shows the excellent agreement between numerical results and the semi-analytical predictions by Chen (1991)
obtained with an eigenfunction expansion variational method. Worth noting is the reduction in the stress

13



Published in International Journal of Solids and Structures (2021) 210–211, 255-272
doi: https://doi.org/10.1016/j.ijsolstr.2020.11.006

0.01 0.1 1
0

0.5

1

a/L

K
(ε
)nu

m
I

/K
(ε
)∞

I

proposed method
Chen (1991)

σ̄yy

L
2a

Figure 4: Effect of the finiteness of the domain size on the stress state at the tip of a RLI. The SIF for a single inclusion in a
finite-size domain (Fig. 2(b)) deviates from that related to a single inclusion in an infinite domain (34) (Fig. 2(a)) when the inclusion
half-length a is increased relatively to the square domain side L.

intensification at increasing values of the ratio a/L due to the interaction with the free edges. The figure also
indicates that the analytical SIF value for the infinite domain K (ε)∞I is well captured when a ≤ 0.1L.

Pair of collinear inclusions. The proposed embedded method is validated towards its exploitation in the
micromechanical study of composites with large inclusion volumes, where it becomes crucial to capture
interaction effects between inclusions that are otherwise neglected in available analytical estimates of elastic
properties (e.g., Halpin (1969)). Although regions of stress amplification are smaller for RLIs than for
cracks (Pingle et al., 2008), interactions can be quite severe for RLIs when these are placed sufficiently close to
each other. Based on the duality between solutions of cracks and rigid line inclusions (Ni and Nemat-Nasser,
1996), Pingle et al. (2007) derived a relation to express the amplification of the stress intensity factors for the
case of multiple RLIs embedded in an elastic unbounded domain and subject to a uniform remote stress field
(with components σ∞xx , σ∞yy, and σ∞xy).

Two collinear (non-intersecting) inclusions are considered. The inclusions have the same half-length a
and are aligned with the x-axis (which is now superimposed to the x̂-axis because θ̄ = 0), with their centers
separated by a distance ∆ + 2a. In this case, considering symmetry, the SIFs, Eqs. (25), at the four RLI tips
are given by

K (ε)I (±a,∆) = µε∞xx

√
a
π

∫ 1

−1
[1 + g(ξ,∆/a)]

√
1 ± ξ
1 ∓ ξ dξ and K (ε)II (±a,∆) = 0,

with g(ξ,∆/a) = 1

2 − 1
2

(√
8 +

6∆
a
+
∆2

a2 −
√

2∆
a
+
∆2

a2

) ξ + 2 +
∆

a√(
ξ + 2 +

∆

a

)2
− 1

,
(35)

where x = −a refers to the inner tips, namely the two closest to each other, and x = +a relates to the
outer tips. The analytical predictions of the two mode I SIFs (made dimensionless through division by the
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mode I SIF K (ε)∞I , Eq. (34), relative to a single inclusion embedded within an unbounded domain as in
Fig. 2(a)) are reported in Fig. 5(a) as functions of the offset ratio ∆/a. The numerical results are also reported
in the figure, obtained considering the two inclusions placed in the middle of a square domain of size L
(Fig. 2(b)). The domain has been discretized with a very fine mesh of bilinear elements, locally refined along
the inclusion’s axis. The numerical results are obtained with reference to two inclusion-domain size ratios
(a/L = {0.05, 0.1}). The corresponding inclusion sizes have been used for the analytical predictions.

Figure 5(a) shows a good agreement between the numerical results and the analytical prediction by Pingle
et al. (2007). Because of the influence of the finite size of the domain used in the numerical simulations,
small inclusions (a = 0.05L) yield a better agreement between numerical and analytical results. In particular,
the two inner tips show a threefold amplification of the stress intensity factor K (ε)I (label A) with respect to
the theoretical value K (ε)∞I corresponding to the case of a single inclusion of half-length a within an infinite
plane. Finally, Fig. 5(b) shows the amplification of the numerical von Mises stress field σvM around the tips
of the RLIs for an offset ratio ∆/a = 0.01.

3. Rigid line inclusions as reinforcing elements: Elastic stiffening

The effective response of an elastic medium containing various distributions of up to 1500 embedded rigid
line inclusions is investigated by considering RLIs distributions representative of buckypaper (i.e., carbon
nanotube sheets) (Hall et al., 2008) or clay platelet (Sheng et al., 2004) nanocomposites.

Unless otherwise stated, and according to the results presented in the previous section, rigid line inclusions
are modeled with Eid/(E2D

b a) ≈ 100 and Kbta/E2D
b ≈ 250. All the inclusions have the same size, with

thickness d = 0.0385a and half-length a = 0.02L, and are embedded in a square unit cell of size L. The
mechanical properties are extracted using a computational homogenization procedure (Suquet, 1985) in which
periodic boundary conditions are imposed on the two-dimensional unit cell in terms of the three average strain
components representative of plane problems. The fact that a small but finite value for the RLI thickness d is
retained, allows to define the volume fraction of the inclusions, which turns out to be equal to 4.62% for 1500
inclusions.

3.1. The roles of RLI orientation
The effects of RLI orientation are investigated by considering the effective response of an elastic medium

characterized by a unit cell containing 1000 embedded RLIs, all inclined at the same angle θ̄ and with their
midpoints randomly distributed in the domain as shown in Fig. 6(a). This RLIs’ distribution defines an
equivalent cubic symmetric solid (with cubic symmetry axes inclined at 45◦ with respect to the x̂-axis aligned
parallel to the RLI).

Figure 6(b) shows the effective in-plane Young’s modulus E2D
eff,y parallel to the y-axis, normalized through

division by the in-plane Young’s modulus E2D
b of the bulk material, as a function of inclusion orientation θ̄ for

various values of the Poisson’s ratio νb of the bulk material, under conditions of plane stress or plane strain.
As expected, the highest value of the stiffness E2D

eff,y is attainedwhen the inclusions are aligned parallel to the
y axis (θ̄ = 90◦), with the (normalized) stiffest effective response when the bulk material has a null Poisson’s
ratio, νb = 0. In addition, the effective response of the composite is stiffer than that of the bulk material for all
but one specific inclination, which depends on the bulk matrix Poisson’s ratio νb. This inclination coincides
with the neutrality angle θ̄ = θ̄n(νb) of a single inclusion, Eq. (33), so that the effective in-plane Young’s
modulus of the composite (E2D

eff,y) becomes exactly that of the bulk material (E2D
b ). Such property follows from
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Figure 5: Interaction between two collinear rigid line inclusions aligned parallel to the x-axis and subject to a uniaxial stress field
of intensity σ̄yy: (a) numerical and analytical stress intensity factor amplification with respect to the theoretical value K (ε)∞I for a
single inclusion of half-length a at varying offset distance ∆ between inclusions; (b) numerical von Mises stress field σvM around
the inclusion tips for ∆/a = 0.01 normalized through division by the applied stress σ̄yy .
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Figure 6: A square 50a× 50a unit cell made up of an isotropic elastic matrix material (Young’s modulus E2D
b ), containing a random

distribution of 1000 equally-inclined rigid line inclusions of length 2a (panel (a)), leads to an equivalent cubic symmetric solid,
characterized by an in-plane Young’s modulus E2D

eff,y parallel to the (vertical) y-axis. This equivalent stiffness is shown in panel (b)
as a function of the inclination θ̄ of the inclusions and for various values of the Poisson’s ratio νb of the bulk material. Neutrality
of multiple inclusions emerges at the orientation defined by Eq. (33), obtained for a single inclusion embedded in an infinite elastic
domain.
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(d) intercalated (vertical) (e) intercalated (vertical) (f) intercalated (random)

Figure 7: The roles of RLIs’ distribution and volume fraction on the composite mechanical properties are assessed through the
estimation of the effective Young’s modulus in the vertical direction, E2D

eff,y . The figure shows typical RLIs’ distributions for the
case with 1500 inclusions of length 2a embedded in a square 50a × 50a unit cell, corresponding to a volume fraction of 4.62%:
(a) horizontal, (b) vertical, and (c) random uniformly distributed RLIs; (d, e) vertically intercalated and (f) randomly intercalated
RLIs.

the neutrality condition, which automatically holds for any number of equally-inclined inclusions whenever it
is satisfied for a single inclusion with that inclination.

For the special case of a nearly incompressible bulkmaterial (with νb = 0.49) under plane strain conditions,
the neutral orientation θ̄n approaches 45°. This implies that the cubic elastic material under consideration
approaches biaxially neutrality so that the effective longitudinal and transverse Young’s moduli tend to the
value of the bulk material (i.e., E2D

eff,x = E2D
eff,y ≈ E2D

b ). This observation is in line with the results reported
in Liu et al. (2006a), where significantly stiffened staggered biocomposites in both longitudinal and transverse
directions were generated by increasing the Poisson’s ratio of the soft matrix towards its incompressibility
limit value.

It is finally remarked that the stiffening in the effective response for small values of the RLI inclination is
significant only under both plane strain conditions and nearly incompressible bulk material, while it becomes
negligible in all other cases.

3.2. The roles of RLI distribution and volume fraction
The influence of RLIs’ distributions is assessed by investigating its effects on the effective in-plane Young’s

modulus, parallel to the y-axis E2D
eff,y (reported normalized through division by E2D

b in Fig. 8), considering the
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geometrical patterns of 1500 RLIs (volume fraction of 4.62%) shown in Fig. 7, with reference to the 50a×50a
square unit cell. In particular, the following RLIs’ distributions are analyzed (Fig. 7) when a plane stress
condition prevails with Poisson’s ratio νb = 0.2:

• Uniform patterns of randomly distributed inclusions, referred to as ‘exfoliated’: parallel to the x-axis,
panel (a), to the y-axis, panel (b), or randomly inclined, panel (c);

• Clusters of parallel inclusions arranged in a chessboard configuration, referred to as ‘intercalated’ and
akin to distributions of clay platelets in polymer-clay nanocomposites (Liu et al., 2006b): aligned parallel
to the y-axis with more, panel (d), or less, panel (e), regularity or randomly oriented clusters, panel (f).

The normalized effective Young’s modulus, E2D
eff,y/E2D

b , is reported in Fig. 8 as a function of the volume
fraction of RLIs (panel (a)) and of the ratio Eid/(E2D

b a) (panel (b)), for the various geometries shown in Fig. 7.
Analytical predictions due to Voigt (Clyne and Hull, 2019), Halpin and Tsai (Halpin, 1969), and Mori and
Tanaka (1973) are also reported for comparison in Fig. 8(b).

The results reported in Fig. 8 show that, among all the considered RLIs’ distributions, the distribution of
vertical inclusions (panel (b)) displays the stiffest response, with a stiffening factor of 3.8, while a negligible
stiffening is observed for horizontal distributions (panel (a)).

The stiffening is reduced for clustered distributions, with an increase factor of 2 and 1.5 for the vertical dis-
tributions in panels (d) and (e), respectively. As a side remark, analytical micromechanical approaches (Halpin,
1969) and two-step homogenization schemes (Pierard et al., 2004) are insensitive to the RLIs’ distribution and
yield identical estimates, not reported for brevity, for composites with exfoliated and intercalated inclusions
such as those reported in panels (b) and (d), respectively. Random inclusion orientations yield much softer
composites, with an increase factor of 1.6 observed for the exfoliated distribution in panel (c) and 1.16 for the
intercalated distribution in panel (f). Inclusions inclined at the neutral angle θ̄ ≈ 24.09°, in distributions simi-
lar to those reported in panels (a) or (b), leave the effective in-plane Young’s modulus unaltered (E2D

eff,y = E2D
b ).

When the vertical distribution in Fig. 7(b) is considered, a marked nonlinear increase in the elastic stiffness
of the composite is displayed (Fig. 8(a), blue line) as an indication that the interaction between inclusions is
maximized for this particular distribution.

Panel (b) in Fig. 8 compares numerical predictions with analytical micromechanical estimates (Voigt,
Halpin-Tsai (H-T), and Mori-Tanaka (M-T)) for the distribution of 1500 vertical inclusions shown in Fig. 7(b)
for various ratios Eid/(E2D

b a). The agreement between numerical and analytical estimates is generally
acceptable for soft inclusions. For stiff inclusions, the Voigt estimate is the less reliable and overestimates
the numerical predictions and the other estimates. The numerical predictions are found in a relatively better
match with Halpin-Tsai estimates, although all analytical micromechanical models are found to overestimate
the effective stiffness for stiff inclusions.

4. RLIs as instability triggers: Nucleation and growth of shear bands

Shear bands emergence and propagation are numerically investigated in this section. The analysis is reffered
to an elastic-viscoplastic-damage bulk material, whose constitutive model is summarized in Section 2.3 and
enables an objective, mesh independent analysis when strain localization occurs. In the following, shear bands
are identified by highly localized damage regions as they offer a clear evidence of strain localization. In this
section ‘damage localization’ is used interchangeably with the term ‘shear band’.
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Figure 8: Predicted effective Young’s modulus E2D
eff,y of a composite (a) with an increasing number of RLIs for distributions similar to

those shown in Fig. 7 and (b) for 1500 vertical inclusions (oriented along the y axis, Fig. 7(b)) as a function of the ratio Eid/(E2D
b a).

Analytical micromechanical estimates (Voigt, Halpin-Tsai (H-T), and Mori-Tanaka (M-T)) are also included.
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Figure 9: Localization of damage, parameter ω defined by Eq. (15), in a specimen subject to tensile stretching with an embedded
rigid line inclusion inclined at angles θ̄ = 0 (a) and θ̄ = 45° (b) with respect to the horizontal axis. Shear bands exhibit a double
symmetry in (a), while the shear bands closer to the inclusion axis are the most intense in (b).

Quasi-static damage evolution and failure mechanisms are systematically investigated for various RLIs’
distributions embedded in a square domain of size L under plane stress conditions, with Poisson’s ratio νb = 0.2.
Following the calibration performed in Section 2.4.2, RLIs are modeled by assuming Eid/(E2D

b a) = 100 and
Kbta/E2D

b = 250. Material degradation is described by means of a J2 material response with von Mises yield
stress σ̄0 = 10−4E2D

b , an exponential softening rule governing the cohesion capacity of the material (Eq. (19)
with b = 200 and c = −1), and an exponential damage law (Eq. (15) with parameters α = 0.99 and β = 300).
The viscoplastic model of the Perzyna type is characterized by exponent N = 1 in the power-law overstress
function (18) and ratio τ/∆t = 8000 in Eq. (21).

Shear bands patterns are examined and compared for various RLIs’ distributions and under different
boundary conditions when the load-carrying capacity of the specimens is almost exhausted, which represents
the situation when failure is attained.

4.1. Only one RLI
One RLI of half-length a = L/13, centered in a square domain, is analyzed at various inclinations. The

bottom edge of the domain is constrained as in Fig. 2(b) so that at all points (except at the leftmost corner
where the displacement in both directions is prescribed to be null) the vertical displacement is constrained and
the tangential tractions are set to zero. The lateral edges of the domain are left unloaded, and the top edge is
displaced vertically (in the direction of the y-axis) through the imposition of a constant displacement rate Û̄uy,
until the final displacement Ū = 0.0015L is reached in 200 equal time-steps. The tangential tractions at the
top edge are set to zero.

Figure 9 shows the damage field, expressed through parameter ω defined by Eq. (15), at an imposed
displacement ūy = Ū for the two inclusion angles, θ̄ = 0° (panel (a)) and θ̄ = 45° (panel (b)). A symmetric
shear band formation is clearly visible, emanating from the tips of the RLI and showing two equivalent
localization directions in panel (a), while shear bands are more pronounced in a specific direction when
symmetry is lost (panel (b)). In the latter case, the shear band with the inclination closest to the inclusion axis is
the most intense, when compared to the other conjugate direction. The numerical predictions are in agreement
with analytical findings referred to the incremental theory of J2-deformation theory of plasticity (Dal Corso
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Figure 10: Evolution of the damage field ω in a specimen containing a single inclusion, inclined at the angle θ̄ = θ̄n ≈ 24.09°
and corresponding to elastic neutrality: (a) the elastic state is unaffected by the inclusion up to just before damage initiation
(ūy = 0.065Ū); (b) inelastic strain initiates damage concentration at the tips of the inclusion after damage initiation (ūy = 0.085Ū);
and (c) a complex shear band pattern has emerged at the final imposed displacement ūy = Ū.

et al., 2008) and experimental results showing that deformation localizes along narrow regions in soft matrix
materials, where nucleation occurs at the tips of hard inclusions. These experiments have been performed on
Cu-W laminates (Özturk et al., 1991), PMMA (Misra and Mandal, 2007) or epoxy resin (Bigoni et al., 2008)
matrices containing metal inclusions.

Shear bands formation and growth from a RLI inclined at the angle of neutrality, θ̄ = θ̄n ≈ 24.09°, for
purely elastic behaviour and with Poisson’s ratio νb = 0.2, is analyzed in Fig. 10, where the damage field ω
is shown at three stages of imposed displacements ūy = {0.065, 0.085, 1}Ū (increasing from left to right).
As a consequence of the elastic neutrality, the inclination of the inclusion is such that stress singularities are
not activated during the elastic response and therefore the solution field remains homogeneous (Fig. 10(a))
until the yield stress is simultaneously reached at every point of the domain. Remarkably, the inelastic
and incrementally anisotropic response of the material induces a stress concentration at each inclusion tip
(Fig. 10(b)), promoting a non-symmetric shear-band formation (Fig. 10(c)).

4.2. Two interacting RLIs
Shear bands that originate from the interaction of two RLIs of equal half-length a = L/13 and inclined at

different reciprocal angles are analyzed. Boundary conditions and material parameters are the same as those
specified in Section 4.1. Results in terms of maps of the damage parameter ω are reported in Fig. 11. Two
cases with only one RLI are included in this figure (panels (d) and (f)) as a reference to facilitate the discussion
on the influence of a second RLI.

As shown in Fig. 11, each inclusion is centered in the corresponding vertical half of the square domain,
therefore the distance between their midpoints is equal to L/2. The RLIs’ inclination is selected from a set
of various angles: θ̄ = 90° (i.e. parallel to the y-axis), θ̄ = 0° (i.e. parallel to the x-axis), θ̄ = θ̄n ≈ 24.09°
(corresponding to the angle of elastic neutrality), and θ̄ = 50°. At variance with the rest of the analyses
presented in this section, σ̄0/Eb = 3 × 10−4 has been assumed.

The following conclusions can be drawn from an analysis of Fig. 11.

• All panels show localization of damage arranged into narrow zones with dominant inclinations θ(±)sb ≈±37° (these are also the inclinations of the shear bands emanating from an imperfection as shown in
Fig. 12).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Localization of damage ω showing shear bands originating from the interaction of two RLIs at various inclinations:
(a) vertical (θ̄ = 90°) and at neutral inclination (θ̄ = θ̄n ≈ 24.09°), (b) vertical (θ̄ = 90°) and inclined at θ̄ = 50°, (c) neutral
(θ̄ = θ̄n ≈ 24.09°) and horizontal (θ̄ = 0°), (d) only one vertical inclusion is considered, (e) vertical and horizontal, (f) only one
horizontal inclusion is considered, (g) both vertical, (h) inclined at θ̄ = 50° and horizontal, (i) both horizontal. The two cases in
panels (d) and (f) with only one inclusion have been included for comparison purposes. The color scale is the same as in Fig. 9.
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Figure 12: Map of damage fieldω revealing shear bands as nucleated from an imperfection symmetrically placed along the left-hand
boundary of the specimen (where RLIs are not present). The shear bands are inclined at the conjugate angles of θ(±)sb ≈ ±37° with
respect to the x-axis. The color scale is the same as in Fig. 9.

• Panels (g) and (i) show the shear band patterns for the symmetric cases of two inclusions either vertical
or horizontal. In both cases the shear bands geometries in each vertical half domain closely resemble
those in the corresponding half domain of the reference panels (d) and (f).

• Panels (b) and (h) display an inclusion inclined at θ̄ = 50° interacting, respectively, with another vertical
or horizontal inclusion. In both cases, a strong damage localization arises at the tips of the inclined
inclusion. The widths of the bands is comparable to that of the bands arising from the vertical inclusion
in panel (b), but considerably wider than that of the horizontal inclusion in panel (h).

• Panels (a) and (c) show the effect of an inclusion placed at the elastic neutrality angle, θ̄ = θ̄n ≈ 24.09°,
interacting, respectively, with another vertical or a horizontal inclusion. In panel (a) the inclined
inclusion is ‘shielded’ by two strong shear bands emanating from the vertical inclusion so that the
inclined inclusion leaves the pattern generated by the other inclusion almost unperturbed (compare with
panel (d)). The situation is different for panel (c), where the inclined inclusion ‘attracts’ one of the shear
bands originating from the horizontal inclusion so that the global pattern results modified with respect
to that related to panel (f).

• Consider the two cases with a single RLI in panels (d) and (f) and the corresponding vertical halves
of the square domain containing the RLI. The shear bands emanating from the RLI in these halves
are approximately comparable to the shear bands emanating from similarly-oriented RLIs in their
corresponding halves in all other panels. This indicates that, for the considered RLIs dimension and
distance, the shear band pattern of each RLI is locally preserved. For example, panel (e) shows a shear
band pattern that can be closely approximated by superimposing results taken from the halves containing
the RLI in reference panels (d) and (f).
This observation is strictly related to the presence of RLIs with comparable length. Indeed, as shown
later in Section 4.4, when RLIs with different lengths are present, shear bands emerging from longer
RLIs prevail over those related to shorter ones.

4.3. Shear bands nucleated from an imperfection and their interaction with RLIs
This section is dedicated to the study of the interaction of the shear bands nucleated from an imperfection

with the surrounding RLIs, where the imperfection can be interpreted as an agent disturbing an otherwise
uniform specimen. We consider the cases of one, two, and 1500 RLIs. The imperfection is introduced as
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(a) (b) (c) (d)

Figure 13: Maps of damage field ω revealing interaction of the shear bands nucleated from an imperfection (located at the middle
of the left edge of the boundary) with a RLI placed at varying inclinations. The color scale is the same as in Fig. 9.

a rectangular region (0.0425L × 0.09L) whose material is characterized by reduced values of yield stress
σ0 and Young’s modulus E2D

b with respect to bulk material values, and is symmetrically placed along the
left-hand boundary of a square domain of size L. The bulk material properties are defined at the beginning
of Section 4, and the square domain is subject to the boundary conditions specified in Section 4.1. The
imperfection generates a symmetric damage field that defines a set of reference shear bands inclined at the
conjugate angles of θ(±)sb ≈ ±37° with respect to the x-axis (Fig. 12).

4.3.1. Interaction with one or two RLIs
Changes in the damage fields are investigated when one or two RLIs, with varying inclination and length,

are placed approximately at the middle of one of the reference shear bands.
Figure 13 shows the effect of a single inclusion of half-length a = 0.08L at different inclinations (θ̄[1] =

{0, 37, −53, 90}° from panel (a) to (d)). The shear band fields in panels (a), (c), and (d) show that damage
weakens along the localization line which intersects the inclusion, while it strengthens along the other shear
band direction. Conversely, when the RLI is aligned with the localization line (panel (b)) the corresponding
damage region remains almost unaltered, while the damage field in the other direction is almost completely
deactivated.

The effect of two symmetric inclusions is shown in Fig. 14, where symmetry allows to report only the
upper half of the specimen. The two inclusions are inclined at θ̄[1] = −θ̄[2] = 37° (panels (a) to (d)) and
θ̄[1] = −θ̄[2] = −53° (panels (e) to (h)), and have different half-lengths a = {0.02, 0.04, 0.08, 0.16}L in panels
(a) and (e), (b) and (f), (c) and (g), (d) and (h), respectively. As shown in the upper row of Fig. 14, an
inclusion aligned with and located on a shear band causes only a modest reduction of the shear band thickness.
Differently, RLIs that orthogonally cross an unperturbed shear band direction (Fig. 12) give rise to a splitting
of the shear band in two smaller shear bands nucleating from the inclusion tips (panels (e) and (f)).

Non-symmetric cases for the imperfection interacting with a pair of RLIs with varying lengths and
inclinations are presented in Fig. 15. Two RLIs with the same half-length, a = {0.02, 0.04, 0.08, 0.16}L,
and inclination, θ̄[1] = 37° and θ̄[2] = −53°, are shown in panels (a) to (d). The inclusion aligned with the
unperturbed shear band direction (in the upper half of each panel) slightly alters the damage field similarly to
the corresponding symmetric case (panels (a) to (d) in Fig. 14). Conversely, the effect of the other inclusion
(shown in the lower half of each panel) ranges from a split of the lower shear band into two smaller shear
bands (for a = 0.02L, panel (a), similar to the symmetric case in Fig. 14(e)), to an annihilation of the shear
band (for a = 0.16L, panel (d)).

25



Published in International Journal of Solids and Structures (2021) 210–211, 255-272
doi: https://doi.org/10.1016/j.ijsolstr.2020.11.006

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Maps of damage field ω revealing interaction of the shear bands nucleated from an imperfection with two symmetric
RLIs of different lengths and at different inclinations. Due to symmetry, only the upper half of domain is reported. The color scale
is the same as in Fig. 9.

Specimens with two RLIs of the same length but increasing from left to right are shown in the upper
part of Fig. 15, where one RLI lies on the upper shear band direction and the other is orthogonal to the
conjugate direction. The lower part of the figure reports the case of two RLIs of equal length (a = 0.08L), one
lying along one shear band (θ̄[1] = 37°) and the other crossing the other shear band at different inclinations
(θ̄[2] = {−37, 0, 37, 90}°). As in the previous case, theRLI lying on the shear band leaves the latter unperturbed
(compare panels (e) to (h) in Fig. 15 with the mirror of the upper half in panel (c) of Fig. 14), while the shear
band cut by the RLI is almost annihilated, except when the RLI lies on the shear band (θ̄[2] = −37°), similar
to the upper shear bands.

4.3.2. Interaction with a large number of RLIs
The failuremechanism of composites with a large number of RLIs (all with the same half-length a = 0.02L)

is investigated by considering five of the six distributions of 1500 RLIs reported in Fig. 7 and a random
distribution of 1500 RLI equally-inclined at the neutral angle. These distributions generate the shear bands
patterns illustrated in Fig. 16 and are used later for comparison purposes. The strong influence of the RLIs’
distribution is evident, with the generation of partially organized shear band patterns. Shear band lengths
comparable to the unit cell size are observed for all but the vertical distribution (panel (c)) where these become
more fragmented.

When an imperfection is also present in the specimen as in Fig. 12, the two shear bands emanating from the
imperfection are ‘fragmented’ to varying degrees by the RLIs, as shown in Fig. 17. The fragmentation ranges
from moderate (panels (a) and (b)) to severe (panels (d) and (f)), with cases of annihilation and shielding
(panels (c) and (e)), leading to shear band geometries similar to the percolation patterns found for highly
anisotropic solids (Bigoni and Noselli, 2010a,b; Gourgiotis and Bigoni, 2016). In all cases, the imperfection
and the RLIs’ distributions have a marked influence on the final shear band patterns. Even if the inclusions
perturb the reference shear bands by fragmenting them, panels (a), (b), (d), and (f) show that influence regions
are determined by the reference shear bands. Fragmentation of the shear bands in the remaining two cases,
panels (c) and (e), is so strong that the final shear band fields result markedly different from the twomacro shear
bands visible in Fig. 12 and referred to a sample without RLIs. Note also that the neutral angle distribution
of RLIs in panel (b) appears to be the less disruptive for the development of the macro shear bands, while the
vertical distributions in panels (c) and (e) provide the maximum shielding to shear band growth.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: Maps of damage field ω revealing interaction of the shear bands nucleated from an imperfection with two RLIs with
varying lengths and inclinations. The color scale is the same as in Fig. 9.

(a) horizontal (b) at neutral angle (c) vertical

(d) random (e) intercalated (vertical) (f) intercalated (random)

Figure 16: Maps of damage fieldω revealing shear bands formation from 1500 RLIs at various distributions. RLIs are: (a) horizontal
as in Fig. 7(a); (b) inclined at neutral angle θ̄ ≈ 24.09° (in a random distribution akin to Fig. 6(a)); (c) vertical as in Fig. 7(b); and
(d) randomly inclined as in Fig. 7(c); (e) intercalated vertically as in Fig. 7(d); and (f) intercalated randomly as in Fig. 7(f). The
color scale is the same as in Fig. 9.
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(a) horizontal (b) at neutral angle (c) vertical

(d) random (e) intercalated (vertical) (f) intercalated (random)

Figure 17: As for Fig. 16, except that now an imperfection is present on the left edge of the domain as that reported in Fig. 12, where
RLIs are not present. RLIs completely change the ‘double shear band geometry’ visible in Fig. 12 even if the latter still defines, in
panels (a) to (d), influence zones for the clusters of shear bands nucleated near the RLIs. The color scale is the same as in Fig. 9.
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Figure 18: Influence of RLIs’ distributions on the global stress/strain response for the square samples analyzed in Fig. 17. A stress
normalization is introduced through division by the maximum stress σ̄0 referred to the sample without RLIs.
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RLI distribution E2D
eff,y

/
E2D∗

eff,y max(σ)/max(σ∗) UT/U∗T
Horizontal, Fig. 17(a) 1.034 1.073 0.920
At neutral angle, Fig. 17(b) 1.005 1.010 0.929
Vertical, Fig. 17(c) 4.288 1.458 0.911
Randomly inclined, Fig. 17(d) 1.617 1.085 0.892
Intercalated (vertical), Fig. 17(e) 2.138 1.131 0.879
Intercalated (random), Fig. 17(f) 1.126 1.013 0.910

Table 1: Values of effective in-plane Young’s modulus, maximum stress, and toughness obtained from the stress-strain curves in
Fig. 18 normalized by the corresponding values (denoted with a star) obtained on a specimen with an imperfection but without RLIs.

To appreciate the RLIs’ influence on the global response of the composite, the normalized stress-strain
curves are reported in Fig. 18 for the cases just analyzed. The figure includes also the normalized stress-strain
curve for a specimen with an imperfection on the left edge and without RLIs (the final damage map is reported
in Fig. 12). Table 1 conveniently lists the corresponding effective in-plane Young’s modulus, maximum stress,
and toughnessUT. These quantities are normalized with respect to the corresponding quantities (denoted with
a star) obtained from the specimen without RLIs. The toughness value UT for a specific RLI distribution is
defined as the measure of the area under the stress-strain curve from the unloaded state to ū/L = 10−3.

RLIs’ distributions affect the global response at various levels. In all examined cases, and compared to the
response of the specimen without RLIs (Fig. 12), inclusions are responsible for an increase of the effective
in-plane Young’s modulus (in the vertical direction) and maximum stress values, together with a reduction of
the toughness. The only exception is represented by the neutral distribution for which the effective in-plane
Young’s modulus is practically unaffected, in analogy with the observed growth of shear bands documented
in Fig. 10 (the small deviation of the maximum stress from unity is due to round-off errors in the numerical
evaluation). The two vertical distributions lead to highest stiffness and maximum stress values and to the
lowest toughness values, although the response of the intercalated (vertical) distribution (Fig. 7(d)) is very
similar to that of the other distributions.

The normalized stress-strain curves in Fig. 18 also indicate that the higher the maximum stress, the steeper
the softening branch, leading to some considerations on the shear band patterns as discussed next. A visual
comparison of the stress-strain curves and the corresponding shear band networks in Figs. 12 and 17 shows
that the shear bands forming for RLIs aligned parallel to the neutral inclination, panel (b), are the closest to
the shear bands emanating from the defect in the specimen without RLIs; the two corresponding stress-strain
curves are also very close to each other. Sorting the remaining RLIs’ distributions by increasing values of
the maximum stress (or corresponding decreasing softening slope) yields the following list (with indication
of the shear band pattern, as visible in the panels of Fig. 17): (i.) intercalated (random), panel (f); (ii.)
horizontal, panel (a); (iii.) randomly inclined, panel (d); (iv.) intercalated (vertical), panel (e); (v.) vertical,
panel (c). The sequence of the shear band patterns shows a clear evolution from the localized pattern in
panel (b), corresponding to the neutral distribution, to the very diffuse pattern in panel (c), related to the
vertical distribution.

4.4. Periodic distributions of RLIs
The analyses in Section 4.3 indicate that RLIs can be very effective in disrupting shear band patterns

emanating from a large defect. In analogy with those analyses, their ‘disruptive capacity’ is now analyzed
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θ̄ = 0◦ θ̄ ≈ 24.09◦ (neutral) θ̄ = 50◦ θ̄ = 90◦

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 19: Maps of damage field ω revealing shear band patterns in a unit square cell (of side L) subject to macroscopic straining in
the vertical direction and containing different RLIs’ distributions. Upper row: one large (or ‘macro’) RLI (a = L/4); Second row:
a periodic distribution of small (or ‘micro’) RLIs (a = L/40); Third row: one large horizontal RLI inside a periodic distribution
of small RLIs at different inclinations (θ̄ = {0, 24.09, 50, 90}°); Lower row: as in the third row, but the large RLI is vertical. The
color scale is the same as in Fig. 9.
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for a family of small (‘micro’) RLIs with respect to the shear bands emanating from a large (‘macro’) RLI.
To simulate the behaviour of an infinite domain, the RLIs are embedded in a square L × L unit cell subject
to periodic boundary conditions. Small RLIs are characterized by a half-length am = L/40 and one hundred
of these is analyzed at different inclinations (θ̄m = {0, 24.09, 50, 90}°) while one large RLI with half-length
aM = L/4 is added, in either the horizontal (θ̄M = 0°) or vertical (θ̄M = 90°) direction. The bulk material
properties are defined at the beginning of Section 4.

The RLIs are embedded in a square unit cell of size L under periodic boundary conditions (Suquet,
1985). The cell is subject to macroscopic straining in the vertical direction obtained by applying a constant
displacement rate using the same parameters employed in Section 4.1.

The shear bands generated by one large RLI placed at different inclinations in the center of the unit cell
are visible in the upper row of Fig. 19. The second row shows the shear band patterns generated by RLIs’
distributions obtained by the horizontal and vertical stacking of the corresponding distributions in the upper
row (with a scale factor 0.1). Because of the periodic boundary conditions and the homothetic relation between
unit cells in the upper and second rows, the shear band patters in the second row can be reconstructed from
those in the upper row by means of the same procedure used to generate the RLIs’ distributions.

As in the cases discussed earlier, the inclination of the RLIs dramatically influences the shear band patterns.
In particular, symmetric networks involving the two conjugate shear band inclinations θ(±)sb can be observed
in panels (a) (θ̄ = 0°) and (d) (θ̄ = 90°), while the other two inclinations in panels (b) and (c) generate
non-symmetric networks, with localization developing mainly at inclination θ(+)sb . A third further shear band
inclination is visible in panel (c), close to that of the RLI.

The interaction between micro and macro RLIs is illustrated by considering a macro RLI placed at the
center of the unit cell and inclined at θ̄M, while surrounded by arrays of micro RLIs inclined at θ̄m. Maps of
damage localization are reported for eight combinations of micro and macro RLIs in the third (θ̄M = 0°) and
fourth (θ̄M = 90°) row of Fig. 19. These fields clearly show the strong mutual influence between micro and
macro inclusions. In particular, the array of micro RLIs generates a fragmentation of the macro-pattern shear
band fields in a manner specific to each micro RLI inclination. This consideration does not hold for the micro
RLIs at the neutral inclination θ̄ = 24.09°, where the shear band fields closely resemble those related to the
macro RLI (cases θ̄ = 0° and 90° in the upper row). In all the considered cases, the macro RLI shields the
micro RLIs inside the rhomboidal domain defined by the intersection of the shear bands nucleated from the
macro RLI tips. In this domain damage is practically zero, with very low damage levels observed around the
micro RLIs close to the delimiting shear bands. Outside the shielded rhomboidal domain, the damage fields
reveal micro-shear banding around the micro RLIs (except for the neutral inclination case). This observation
suggests that shear bands emanating from longer RLIs prevail over those emanating from shorter RLIs, in
contrast with the limit case of RLIs of equal length (Fig. 11), where the shear bands emanating from each RLI
are in ‘equilibrium’ and none prevails over the other one.

5. Summary

Simulations performed with a two-dimensional model for the analysis of dispersions of stiff and thin
platelets embedded in a ductile matrix have revealed the complex shear banding patterns leading a material
to failure. The model is based on the rigid line inclusion concept, which has been applied in a visco-plastic-
damaging material matrix and implemented through an embedded reinforcement approach. The embedded
approach adopted in this study, based on the formulation proposed by Balakrishnan and Murray (1986),
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enables an accurate and computationally affordable analysis of composites with any distribution and at any
volume fraction of rigid line inclusions. Thanks to the individual representation of each inclusion by means
of an appropriate kinematic description, RLIs’ interaction and orientation effects are properly accounted for
in the prediction of local stress fields in linear and nonlinear regimes, allowing for damage accumulation and
localization at the level of each RLI.

The following results have been obtained by running analyses, with up to 1500 RLIs, for random, periodic,
or clustered RLIs’ distributions.

• In the elastic range, RLIs lead to a stiffening of the elastic response, with the exception occurring
when the inclination of the RLIs with respect to the applied stress is sufficiently close to the ‘neutrality
condition’ expressed by Eq. (33). The stiffening, as expected, depends on the geometry of the RLIs’
distribution.

• Neutrality does not hold when the matrix material enters the inelastic regime, and therefore RLIs always
have an important effect on the overall mechanical response.

• When inelastic deformation occurs and damage tends to localize into shear bands, the tips of the RLI
promote, with their stress concentration, localization nucleation and growth and, at the same time, may
hinder, slow down, and even stop a localization growing from a defect larger than the RLI. In the former
case, shear bands form networks of more or less pronounced regularity, characterized by a fine texture
modulated by the RLIs’ and shear band geometries. In the latter case, the thick shear bands that would
nucleate and grow from the large defect are ‘fragmented’ into a cascade of tiny lines of concentrated
damage, often following a path coherent with the thick, undeveloped underlying shear bands.
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