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1 Complementary equations for the theoretical framework of the elastica catas-
trophe machines

This Section is devoted to further considerations regarding the theoretical framework of the
elastica catastrophe machines, with emphasis on the reduction of the dependencies of the control
parameters on the physical and kinematical coordinates. Moreover, suggested initial values for
such control parameters are proposed to initiate the evolution of the deformed shape within
the inextensibility set and in the neighbourhood of an (if existing) effective catastrophe locus.
Finally, a detailed description of the algorithm for the numerical evaluation of the catastrophe
loci is presented.

1.1 Reducing the dependencies between coordinates

As discussed in the main document, the generic configuration of the rod can be equivalently
described (i.) through the three coordinates {Xl, Yl,Θl} expressing the position of the rod’s
final end, (ii.) through three primary kinematical quantities {d, θA, θS} or (iii.) through the
two control parameters {p1, p2}. The discrepancy in the number of the variables in each of
these three representations suggests that the coordinates pj in the equation

pj = p̃j(Xl, Yl,Θl,q), j = 1, 2, (SM 1)

can be also expressed as function of only two coordinates of the rod’s final end, namely

pj = p̃j(Yl,Θl,q) or pj = p̃j(Xl,Θl,q), j = 1, 2, (SM 2)

so that the substitution into1 eqn (21) provides one of the two coordinates in terms of the other
coordinate and the rotation as

Xl = Xl(Yl,Θl,q), or Yl = Yl(Xl,Θl,q). (SM 3)

1Equation numbering ”(X)” is referred to the equations of the main document while ”(SM X)” to those of
the supplementary material as ”(SM X)”.
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Considering the two relations (SM 3) into eqns (20) leads to two implicit relations involving
the symmetric and antisymmetric angles together with one of the two physical coordinates,

G(Yl, θA, θS,q) = Xl (Yl, 2θS,q) tan(θS − θA)− Yl = 0

or (SM 4)

H(Xl, θA, θS,q) = Xl tan(θS − θA)− Yl (Xl, 2θS,q) = 0.

Assuming further that the kinematic rule (21) defined by the machine is such that the implicit
function (G or H) has continuous and non-null partial derivative of the implicit function (G
or H) with respect to the involved coordinate (∂G/∂Yl or ∂H/∂Xl), such coordinate can be
described as a function of the symmetric and antisymmetric angles,

Yl = Yl(θA, θS,q) or Xl = Xl(θA, θS,q). (SM 5)

From this property it follows that, considering eqn (20) and (SM 2), the distance d and the
control parameters pj (j = 1, 2) can be expressed in turn as functions of the antisymmetric
and symmetric angles only

d = d(θA, θS,q), pj = p̂j(θA, θS,q), j = 1, 2. (SM 6)

being the latter equation equivalent to

pj = p̂j(d, θA, θS,q), j = 1, 2, (SM 7)

but expressed as a function of a lower number of coordinates. In the cases when the function
G(Yl, θA, θS,q) or H(Xl, θA, θS,q) does not satisfy the aforementioned properties, a different
pair of primary kinematical quantities can be taken as variable to express the remaining kine-
matical quantity and the control parameter vector, namely, as

θA = θA(d, θS,q), pj = p̂j(d, θS,q), j = 1, 2, (SM 8)

or equivalently as

θS = θS(d, θA,q), pj = p̂j(d, θA,q), j = 1, 2. (SM 9)

It is also worth remarking that, in order to overcome periodicity issues inherent to the trigono-
metric function arctan, the antisymmetric rotation θ̃A (as well as the other angular quantities)
is evaluated as integration over the time-like parameter t, from an initial and a current state
during the controlled ends’ history and corresponding to t = τ0 and t = τ

θ̃A(τ) = θ̃A(τ0) +
Θl(τ)

2
−
∫ τ

τ0

Xl(t)Ẏl(t)− Yl(t)Ẋl(t)

Xl(t)2 + Yl(t)2
dt, (SM 10)

where the superimposed dot stands for the derivative with respect to the time-like parameter
t.
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1.2 Suggested initial values for the control parameters

In order to initiate the evolution from a configuration in the ‘surroundings’ of the (if existing)
catastrophe locus, the initial values of control parameters p(τ0) are suggested to be selected
satisfying the following initial conditions (IC):

(IC1) the end rotation at the final coordinate is null (Θl(τ0) = 0), implying a null initial value
of the symmetric angle

θS(τ0) = 0; (SM 11)

(IC2) the initial deformed configuration displays two inflection points, implying the satisfaction
of the modulus restriction for the antisymmetric angle (|θA(τ0)| < π) provided by eqn
(26).

Being the symmetric angle θS only dependent on Θl, eqn (19)3, it follows that imposing the
initial condition (IC1) through eqn (SM 11) is equivalent to impose

p2(τ0) = p02 = −υ. (SM 12)

1.3 Numerical algorithm for the evaluation of catastrophe sets

The evaluation of the ‘catastrophe set’ CK , as the elastica set EK intersection with the ‘snap-
back set’ SK , can be performed only numerically. A specific algorithm was developed in
Mathematica, whose steps are:

Step 1. to define the discrete set of control parameter vectors p ⊆ EC . This is performed as
a fine discretization assuming a maximum spacing equal to 10−3 for each of the two
control parameters;

Step 2. to relate the discrete set of EC (introduced at the previous step) to the corresponding
projections in the primary kinematical space and the physical plane, as the discretiza-
tion of the elastica sets EK and EP ;

Step 3. to identify the catastrophe set CC through the evaluation of the (approximated) critical
control parameter vector pC, belonging to discretization of the elastica set EC and
numerically found by imposing

pC :
∣∣∣θsb(±)S

(
d(p,q), θA(p,q)

)
− θS(p,q)

∣∣∣ < 6 · 10−4 π; (SM 13)

Step 4. to evaluate catastrophe sets {dC, θCA, θCS} and {XCl , Y CL } as the projection of the critical
control parameters pC (achieved at the previous step) in the kinematical space and in
the physical plane.

2 Complementary equations and considerations about the proposed elastica catas-
trophe machines

The equations presented in Sect. 1 are detailed here for both the families of elastica catastrophe
machines. In particular, the specific cases of rotation centre coincident (κR = λR = 0) and
infinitely far away (

√
κ2R + λ2R → ∞) from the the origin are analyzed for the ECM-I respec-

tively in Sects. 2.1.1 and 2.1.2. The limit case of rigid bar with infinite length is developed for
ECM-II in Sect. 2.2.1.
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2.1 ECM-I

The description of the primary kinematic quantities {d, θA, θS} for ECM-I as functions of the
control parameter vector p follows from eqns (19) and (20) in the main text as

d(p,qI) =

√
(κR + p1 cos p2)

2 + (λR + p1 sin p2)
2l,

θA(p,qI) =
p2 + υ

2
− arctan

λR + p1 sin p2
κR + p1 cos p2

,

θS(p,qI) =
p2 + υ

2
.

(SM 14)

By inverting eqn (38), the control parameters can be expressed as functions of the physical
coordinates, in particular the first control parameter is given by

p̃1(Yl,Θl,q
I) =

Yl/l − λR
sin (Θl − υ)

, for Θl 6= υ + kπ, k ∈ Z,

p̃1(Xl,Θl,q
I) =

Xl/l − κR
cos (Θl − υ)

, for Θl 6= υ + (k + 1
2
)π, k ∈ Z,

(SM 15)

the former equation equivalent to the latter, to be used when the rigid bar is not parallel to
the X and Y axis, respectively, while the second control parameter is given by

p̃2(Θl,q
I) = Θl − υ. (SM 16)

Exploiting the inverse relations (SM 15) and (SM 16) into eqn (38), one of the two coordinates
can be expressed as a function of the other coordinate and the rotation as

Xl(Yl,Θl,q
I) =

κR +

Yl
l
− λR

tan (Θl − υ)

 l, for Θl 6= υ + kπ, k ∈ Z,

Yl(Xl,Θl,q
I) =

[
λR + tan (Θl − υ)

(
Xl

l
− κR

)]
l, for Θl 6= υ + (k + 1

2
)π, k ∈ Z.

(SM 17)
Inverting eqn (SM 14) leads to express the control parameters as functions of two of the primary
kinematical quantities. In particular, while the second control parameter is only dependent on
the antisymmetric angle

p̂2(θS,q
I) = 2θS − υ, (SM 18)

the first control parameter can be expressed as a function of both the symmetric and antisym-
metric angle only when the rotation center of the rigid bar does not lay along the straight line
connecting the two rod’s ends,

p̂1(θA, θS,q
I) =

κR tan (θS − θA)− λR
sin (2θS − υ)− cos (2θS − υ) tan (θS − θA)

, for θS + θA 6= υ + kπ, k ∈ Z.

(SM 19)
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Differently, in the case when the rotation center of the rigid bar and the two rod’s ends are
aligned along a straight line, the first control parameter can be expressed as a function of the
distance and the symmetric angle as

p̂1(d, θS,q
I) = (−1)k

d

l
− κR

cos 2θS − υ
,

p̂1(d, θS,q
I) = (−1)k

d

l
− λR

sin 2θS − υ
,

for θS + θA = υ + kπ, k ∈ Z. (SM 20)

Finally, whenever the rigid bar is not parallel to the straight line connecting the rod’s ends,
the distance d for ECM-I can be described as a function of the symmetric and antisymmetric
angles as

d(θA, θS,q
I) =

κR tan (2θS − υ)− λR
cos (θS − θA) tan (2θS − υ)− sin (θS − θA)

l, for θS + θA 6= υ + kπ, k ∈ Z,

(SM 21)
differently, when the rigid bar becomes parallel, the distance d becomes a free parameter and
the angles are constrained to each other

θS(θA,q
I) = υ + kπ − θA, or equivalently θA(θS,q

I) = υ + kπ − θS, k ∈ Z, (SM 22)

where the parameter k for these last parametrizations is given by evolution continuity, similarly
to eqn (SM 10).
It is also worth noting that a sufficient condition for the connectivity of the inextensibility set
IC is given by a position of the rotation center R within such a set,

κR
2 + λR

2 < 1, (SM 23)

a property however not fundamental for the realization of an ‘effective’ elastica catastrophe
machine. All the cases reported in Figs. 6, 7 and 8 consider a rotation center R of the
rigid bar within the inextensibility set, eqn (SM 23). It is observed that when the design
parameters are such that an ‘effective catastrophe machine’ is realized, the rotation center R
is never inside the catastrophe locus. It is also worth remarking that the effectiveness of the
catastrophe locus does not imply its simple connection in the control parameters plane. This
is indeed the case when the rotation center R lays along the catastrophe set CP at the physical
coordinates corresponding to the junction point of C(+)

P with C(−)P . Its projection in the control
parameters plane share only the first coordinate p1 = 0 while has two different values in the
second coordinate p2 (as it can be noted in the left column of Fig. 6).
Finally, the recommendation for the initial value of the control parameters vector p(τ0) =
{p01, p02 = −υ} to belong to the inextensibility set IC constrains the first control parameter to
the range p01 ∈

[
p01,min, p

0
1,max

]
, with

p01,min = max

[
0,−κR cos υ + λR sin υ −

√
1− κ2R − λ2R +

(
κR cos υ − λR sin υ

)2]
,

p01,max = −κR cos υ + λR sin υ +
√

1− κ2R − λ2R +
(
κR cos υ − λR sin υ

)2
.

(SM 24)

From imposing the existence of a range inclusive of positive values in the previous equation,
the design parameters κR and λR are constrained to satisfy

κ2R + λ2R −
(
κR cos υ − λR sin υ

)2 ≤ 1,

−κR cos υ + λR sin υ +
√

1− κ2R − λ2R +
(
κR cos υ − λR sin υ

)2
> 0.
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2.1.1 ECM-I with rotation centre R coincident with the origin

Null coordinates for the rotation center (κR = λR = 0) imply that the distance d reduces to a
linear function of the first control parameter p1 and that the antisymmetric angle θA reduces
to a linear function of the second control parameter p2,

d = p1l, θA =
υ − p2

2
−

 υπ + 1

2

 2π, (SM 25)

where the floor operator b c provides the greatest integer less than or equal to the relevant
argument. Under this condition, the elastica set EK reduces to the portion of plane

θA + θS = υ −

 υπ + 1

2

 2π, (SM 26)

under the constraint (26). From the analysis of the intersection of such elastica set EK and the
snap-back surface SK , it follows that if λR = κR = 0 then an effective machine is generated
only when ∣∣∣∣∣∣υ −

 υπ + 1

2

 2π

∣∣∣∣∣∣ . 0.726π. (SM 27)

2.1.2 ECM-I with rotation centre R infinitely far away from the origin

For large values of
√
κ2R + λ2R, the inextensibility domain approaches an ellipse within the

control parameter plane p1 − p2, described by

IC =

{
p :

[
p1 −

√
κ2R + λ2R

]2
+
(
κ2R + λ2R

) [
p2 − π − arctan

λR
κR

]2
≤ 1

}
. (SM 28)

In order to satisfy the aforemmentioned inequality, the second control parameter has to assume
the approximately constant value p2 ' π + arctanλR/κR. Therefore, the symmetric angle θS
takes the approximately constant values

θS =
π + υ + arctanλR/κR

2
. (SM 29)

It follows that the evolution of the final curvilinear coordinate is just a rigid-body translation
within the physical plane, at constant end’s rotation Θl = 2θS. The equation (SM 29) implies
that a centre of rotation very distant from the origin never makes effective ECM-I. In the
particular case when θS = Θl = 0, attained for υ + arctanλR/κR = −π, all the points of the
catastrophe set of ECM-I become pitchfork bifurcations [1]. Under these hypotheses, the ECM-
I could be exploited as a elastica pitchfork bifurcation machine to show the infinite possible
pitchfork bifurcations of the system, as shown in Fig. SM 1.
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Fig. SM 1: Projection of the bifurcations set for the elastica pitchfork bifurcation machine within the primary
kinematical space (left) and the physical plane (right). The elastica pitchfork bifurcation machine can be
generated from ECM-I with infinitely far rotation center R (κ2R + λ2R → ∞) and υ + arctanλR/κR = −π or
from ECM-IIa and ECM-IIb with rigid bar of infinite length (ρ→∞) and υ = −α and υ = −α−π, respectively.
Deformed configurations are reported within the physical plane for some end position, with those laying along
the bifurcation set that display m = 3 inflections points (the mid-point and the two ends, elastica reported in
purple). Elastica in red (blue) colour has negative (positive) curvature at the initial coordinate, Θ′(s = 0).

2.2 ECM-II

By considering eqn (42) in eqns (19) and (20), the primary kinematic quantities {d, θA, θS} can
be expressed for ECM-II as functions of the control parameters vector p as

d(p,qII) =

√
(κD + p1 cosα + ρ cos p2)

2 + (λD + p1 sinα + ρ sin p2)
2 l,

θA(p,qII) =
p2 + υ

2
− arctan

λD + p1 sinα + ρ sin p2
κD + p1 cosα + ρ cos p2

,

θS(p,qII) =
p2 + υ

2
.

(SM 30)

The first control parameter can be expressed as a function of the physical coordinates by
inverting eqn (42) as

p̃1(Yl,Θl,q
II) =

Yl/l − λD − ρ sin (Θl − υ)

sinα
, for α 6= kπ,

p̃1(Xl,Θl,q
II) =

Xl/l − κD − ρ cos (Θl − υ)

cosα
, for α 6=

(
k + 1

2

)
π,

(SM 31)

where k ∈ Z. The previous two equations, equivalent to each other, can be used indifferently
except for the case of a designed straight line (where the rigid bar rotation center may move)
parallel to the X (Y ) axis where only the second (first) equation is feasible.
Relations (SM 15) and (SM 31) together with eqn (42) provide one of the position coordinates
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as a function of the two remaining physical coordinates as

Xl(Yl,Θl,q
II =

Yl
tanα

+ l

[
κD + ρ cos (Θl − υ)− λD + ρ sin (Θl − υ)

tanα

]
, for α 6= kπ,

(SM 32)

Yl(Xl,Θl,q
II) =Xl tanα+

[λD + ρ sin (Θl − υ)− tanα (κD + ρ cos (Θl − υ))] , for α 6= (k +
1

2
)π.

The inversion of eqns (37) and eqn (SM 30) provides the same equation obtained for the
ECM-I expressing the second control parameter as a function of the physical rotation and the
symmetric angle, respectively

p̃2(Θl,q
II) = Θl − υ, p̂2(θS,q

II) = 2θS − υ. (SM 33)

The inversion of eqn (SM 30) also provides the expression of the first control parameter as
function only of the antisymmetric and symmetric angles

p̂1(θA, θS,q
II) =

(κD + ρ cos (2θS − υ)) tan (θS − θA)− λD − ρ sin (2θS − υ))

sinα− cosα tan (θS − θA)
, (SM 34)

for θS − θA 6= α + kπ

holding (for k ∈ Z and) except when the straight line connecting the two rod’s ends is parallel
to the designed straight line (where the rigid bar rotation center may move). Differently,
under this condition (equivalent to α+ kπ = arctanYl/Xl), the first control parameter can be
expressed as a function of the distance and symmetric angle as

p̂1(d, θS,q
II) = (−1)k

d

l
− κD + ρ cos (2θS − υ)

cosα
,

p̂1(d, θS,q
II) = (−1)k

d

l
− λD + ρ sin (2θS − υ)

sinα
,

for θS − θA = α + kπ, k ∈ Z. (SM 35)

Lastly, one of the three primary kinematical quantities can be expressed as a function of the
other two. The distance d for ECM-II can be described as a function of the symmetric and
antisymmetric angles as

d(θA, θS,q
II) =

κD + ρ cos (2θS − υ) tanα− (λD + ρ sin (2θS − υ))

cos (θS − θA) tanα− sin (θS − θA)
l. (SM 36)

for θS − θA 6= α + kπ.

As the straight line connecting the two rod’s ends is parallel to the designed straight line, the
aforementioned equation can not be used and one of the angles θA or θS can be expressed as a
function of the other one (leaving the distance d as free variable)

θS(θA,q
II) = α+kπ+ θA, or equivalently θA(θS,q

II) = θS−α−kπ, k ∈ Z. (SM 37)

Finally, it is worth remarking that the initial value of the control parameter vector is constrained
by eqn (SM 12) and the condition of belonging to the inextensibility set IC . The latter condition

8



constrains the first control parameter within the range p01 ∈
[
p01,min, p

0
1,max

]
with

p01,min = −κD cosα− λD sinα− ρ cos (α + υ)−√
(λD sinα + ρ cos (α + υ) + κD cosα)2 −

(
κD2 + λD

2 + ρ2 − 2ρ(λD sin υ − κD cos υ)− 1
)
,

(SM 38)

p01,max = −κD cosα− λD sinα− ρ cos (α + υ)+√
(λD sinα + ρ cos (α + υ) + κD cosα)2 −

(
κD2 + λD

2 + ρ2 − 2ρ(λD sin υ − κD cos υ)− 1
)
,

where, in order to have a non-null set for the possible initial vector p0, the design parameters
κD, λD, α, ρ, and υ have to satisfy the following inequality

1 + (λD sinα+ ρ cos(α+ υ) + κD cosα)2 ≥ κD
2 + λD

2 + ρ2− 2ρ(λD sin υ− κD cos υ). (SM 39)

2.2.1 ECM-II with the rigid bar of infinite length

In the case of ECM-II with very large values of rigid bar length (ρ → ∞), the inextensibility
domain can be approximated by two ellipses within the control parameter plane p1 − p2. The
ellipse for ECM-IIa is defined by

IIIaC =

{
p :

[
p1 +

(
ρ+ κD cosα + λD sinα− (κD sinα− λD cosα)2

2ρ

)]2
(SM 40)

+ ρ2
[
p
(a)
2 − α−

κD sinα− λD cosα

ρ

]2
< 1

}
.

while that for ECM-IIb by

IIIbC =

{
p :

[
p1 −

(
ρ− κD cosα− λD sinα− (κD sinα− λD cosα)2

2ρ

)]2
(SM 41)

+ ρ2
[
p
(b)
2 − α− π +

κD sinα− λD cosα

ρ

]2
< 1

}
.

These two inextensibility domains imply an approximately constant value for the second control
parameter, p

(a)
2 ' α and p

(b)
2 ' α + π, so that the symmetric angle θS is also constant

θ
(a)
S =

α + υ

2
θ
(b)
S =

α + π + υ

2
. (SM 42)

Similarly to ECM-I with rotation center infinitely far away from the origin, ECM-II with
infinitely long rigid bars is never an effective catastrophe machine and in some special case
(υ = −α for ECM-IIa or υ = −α − π for ECM-IIb) displays pitchfork bifurcation points as
catastrophe set. The projections of this bifurcation set within the primary kinematical space
and within the physical plane are coincident with the special cases of ECM-I and reported in
Fig. SM 1.
Finally, although the realization of an ‘effective’ ECM-II is not strictly related to this property,
it is noted that the connectivity of its inextensibility domain IC , eqn (44), is attained when

|κD sinα− λD cosα|+ ρ < 1. (SM 43)
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3 Additional experimental results

Similar to the experimental results shown in Figs. 2 and 17 of the main text, photos taken at
specific stages are reported here for ECM-IIb with κD = λD = α = 0, ρ = 1 and υ = π. In
particular, all the stable equilibrium configurations are reported at three stages for in Fig. 2.
The clamp position moves from inside the bistable region (left photo) to inside the monostable
region (right photo), by crossing the catastrophe locus (central photo) region (from left to
right in Figs. 16 and 17). The evolution of the clamp position is ruled by varying the control
parameter p2 at fixed value of p1. Moreover, the transition of the deformed configuration during

Fig. SM 2: As for Fig. 17 but for ECM-IIb (with κD = λD = α = 0, ρ = 1 and υ = π), involving a different
definition of the control parameters {p1, p2} (left).

a continuous evolution can be also appreciated in Fig. 3 where the fast motion at snapping is
shown in the central photo (each two consecutive snapshots are referred to a time interval of
approximately 0.15 sec).

Fig. SM 3: As for Fig. 2, but for ECM-IIb (with κD = λD = α = 0, ρ = 1, υ = π) with increasing the
second control parameter p2 (rotation angle) and fixed value of p1. Snapping for a configuration with negative
curvature at the two ends (highlighted with a red dashed line) is shown at crossing the part C−P (red line)
of catastrophe locus. Due to the symmetry, snapping is not reported for crossing the part C+P (blue line) of
catastrophe locus.
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